Skip to main content

Production of Optically Pure Aryl Epoxides by Recombinant E. coli Carrying Styrene Monooxygenase

A New Biocatalyst Based On Pseudomonas fluorescens ST Genes

  • Chapter
  • 600 Accesses

Abstract

We developed a recombinant E. coli strain, carrying P.fluorescens styrene monooxygenase genes (styA and styB), able to produce enantiomerically pure epoxides by bioconversion of different aryl vinyl and aryl ethenyl compounds. The broad substrate preference showed by styrene monooxygenase indicates its potential for the production of several fine chemicals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beltrametti, F., A.M. Marconi, G. Bestetti, C. Colombo, E. Galli, M. Ruzzi, and E. Zennaro. “Sequencing and functional analysis of styrene catabolism genes from Pseudomonas fluorescens ST.” Appl. Environ. Microbiol. 65(6) (1997):2794–2797.

    Google Scholar 

  • Bernasconi, S., F. Orsini, G. Sello, A. Colmegna, E. Galli, and G. Bestetti. “Bioconversion of substituted styrenes to the corresponding enantiomerically pure epoxides by a recombinant E. coli strain.” Tetrahedron Lett. 41 (2000):9157–9161.

    Article  CAS  Google Scholar 

  • Cox, H. H. J., B. W. Faber, W. N. M. van Heiningen, H. Radhoe, H. J. Doddema, and W. Harder. “Styrene metabolism in Exophiala jeanselmei and involvement of a cytochrome P-450-dependent styrene monooxygenase.” Appl. Environ. Microbiol. 62(4) (1996): 1471–1474.

    PubMed  CAS  Google Scholar 

  • Di Gennaro, P., A. Colmegna, E. Galli, G. Sello, F. Pelizzoni, and G. Bestetti. “A new biocatalyst for production of optically pure aryl epoxides by styrene monooxygenase from Pseudomonas fluorescens ST.” Appl. Environ. Microbiol. 63(6) (1999):2232–2239.

    Google Scholar 

  • Fruetel, J. A., J. R. Collins, D. L. Camper, G. H. Loew, and P. R. Ortiz de Montellano. “Calculated and experimental absolute stereochemistry of the styrene and β-methylstyrene epoxides formed by cytochrome P450cam.” J. Am. Chem. Soc. 114 (1992):6987–6993.

    Article  CAS  Google Scholar 

  • Fu, M. H., and M. Alexander. “Biodegradation of styrene in samples of natural environments.” Environ. Sci. Technol. 26 (1992): 1540–1544.

    Article  CAS  Google Scholar 

  • Furuhashi, K. “Biological routes to optically active epoxydes”, p. 167–186. In A. N. Collins, G. N. Sheldrake, and J. Crosby (ed.), Chirality in industry. John Wiley & Sons Ltd., Chichester, United Kingdom, 1992.

    Google Scholar 

  • Guengerich, F. P. “Reactions and significance of cytochrome P-450 enzymes. J. Biol. Chem. 266 (1991):10019–10022.

    PubMed  CAS  Google Scholar 

  • Hartmans, S., M. J. van der Werf, and J. A. M. de Bont. “Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase.” Appl. Environ. Microbiol. 56 (1990):1347–1351.

    PubMed  CAS  Google Scholar 

  • Marconi, A. M., F. Beltrametti, G. Bestetti, F. Solinas, M. Ruzzi, E. Galli, and E. Zennaro. “Cloning and characterization of styrene catabolism genes from Pseudomonas fluorescens.” Appl. Environ. Microbiol. 62(1996):121–127.

    PubMed  CAS  Google Scholar 

  • May, S. W.. and R. D. Schwarts. “Stereoselective epoxidation of octadiene catalyzed by an enzyme system of Pseudomonas oleovorans.” J. Am. Chem. Soc. 96 (1974):4031–4032.

    Article  CAS  Google Scholar 

  • Nöthe, C., and S. Hartmans. “Formation and degradation of styrene oxide stereoisomers by different microorganisms.” Biocatalysis 10 (1994):219–225.

    Article  Google Scholar 

  • O’Connor, K. E., A. D. W. Dobson, and S. Hartmans. “Indigo formation by microorganisms expressing styrene monooxygenase activity.” Appl. Environ. Microbiol. 63 (1997):4287–4291.

    PubMed  Google Scholar 

  • O’Connor, K., C. M. Buckley, S. Hartmans, and A. D. W. Dobson. “Possible regulatory role for nonaromatic carbon sources in styrene degradation by Pseudomonas putida CA-3.” Appl. Environ. Microbiol. 63 (1995):4287–4291.

    Google Scholar 

  • Panke, S., B. Witholt, A. Schmid, and M. G. Wubbolts. “Towards a biocatalyst for (s)-styrene oxide production: characterization of the styrene degradation pathway of Pseudomonas sp. Strain VLB 120. Appl. Environ. Microbiol. 64(6) (1998):2032–2043.

    PubMed  CAS  Google Scholar 

  • Smith, M. R. “The biodegradation of aromatic hydrocarbons by bacteria.” Biodegradation 1 (1990): 191–206.

    Article  PubMed  CAS  Google Scholar 

  • Van der Meer, J. R., W. M. de Vos, S. Harayama, and A. J. B. Zehnder. “Molecular mechanism of genetic adaptations to xenobiotic compounds.” Microbiol. Rev. 56 (1992):677–694.

    PubMed  Google Scholar 

  • Velasco, A., S. Alonso, J. L. García, J. Perera, and E. Díaz. “Genetic and functional analysis of the styrene catabolic cluster of Pseudomonas sp. strain Y2.” J. Bacteriol. 180 (1998): 1063–1071.

    PubMed  CAS  Google Scholar 

  • Warhurst, A. M., and C. A. Fewson. “Microbial metabolism and biotransformations of styrene.” J. Appl. Bacteriol.11 (1994):597–606.

    Google Scholar 

  • Watabe, T., N. Ozawa, and K. Yoshikawa. “Stereochemistry in the oxidative metabolism of styrene by hepatic microsomes.” Biochem. Pharmacol. 30 (1981): 1695–1698.

    Article  PubMed  CAS  Google Scholar 

  • aWubbolts, M.G., J. Hoven, B. Melgert, and B. Witholt. “Efficient production of optically active styrene epoxides in two-liquid phase cultures.” Enzyme Microb. Technol. 16 (1994):887–893.

    Article  CAS  Google Scholar 

  • bWubbolts, M. G., P. Reuvekamp, and B. Witholt. “TOL plasmid-specified xylene oxygenase is a wide substrate range monooxygenase capable of olefin epoxidation.” Enzyme Microb. Technol. 16 (1994):608–615.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Colmegna, A., Galli, E., Sello, G., Bestetti, G. (2001). Production of Optically Pure Aryl Epoxides by Recombinant E. coli Carrying Styrene Monooxygenase. In: Merten, OW., et al. Recombinant Protein Production with Prokaryotic and Eukaryotic Cells. A Comparative View on Host Physiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9749-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9749-4_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5756-3

  • Online ISBN: 978-94-015-9749-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics