Skip to main content
  • 602 Accesses

Abstract

The cell-free methodology for the synthesis of functionally active proteins is considered, and the so-called continuous cell-free translation and transcription-translation systems are described. The continuous cell-free systems for gene expression are based on the use of a porous barrier that retains the high-molecular-weight components of the protein-synthesizing machinery within a defined reaction compartment, and at the same time provides the continuous feeding with substrates (NTPs and amino acids) and the removal of reaction products. There are two versions of the continuous systems: the flow version (continuous-flow cell-free, or CFCF systems) and the dialysis version (continuous-exchange cell-free, or CECF systems). Both versions have been shown to provide a prolonged synthesis of proteins, as compared with standard (batch) cell-free systems, and correspondingly a significantly higher yield of proteins synthesized. The synthesis of fusion proteins and the direct expression of PCR products in cell-free systems are discussed as promising methodological approaches in a number of cases. Using the monitoring of polypeptide elongation in cell-free systems the evidence is presented that the folding of synthesized polypeptides into functional protein globules proceeds on ribosomes during translation (co-translational protein folding).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alakhov, Y.B., Baranov, V.I., Ovodov, S.J., Ryabova, L.A., Spirin, A.S., and Morozov, I.J. Method of preparing polypeptides in cell-free translation system. United States Patent # 5,478,730 (1995).

    Google Scholar 

  • Alexandrov, A., Kolosova, I., and Kolosov, M. mRNA stabilization in continuous flow translation system. Biochem. Mol. Biol. Intern. 38 (1996): 1111–1116.

    CAS  Google Scholar 

  • Baranov, V.I., and Spirin A.S. Gene expression in cell-free system on preparative scale. In: R. Wu (ed.) Methods in Enzymology, Vol. 217:Recombinant DNA, Part H, Academic Press, San Diego, CA, pp. 123–142. 1993.

    Chapter  Google Scholar 

  • Baranov, V.I., Morozov, I.Y., Ortlepp, S.A., and Spirin, A.S. Gene expression in a cell-free system on the preparative scale. Gene 84 (1989): 463–466.

    Article  PubMed  CAS  Google Scholar 

  • Birjukov, S.V., Simonenko, P.N., Shirokov, V.A., Majorov, S.G., and Spirin, A.S. Method for synthesis of polypeptides in cell-free systems. Requested Patent WO 0058493 A (1999).

    Google Scholar 

  • Chekulayeva, M.N., Kurnasov, O.V., Shirokov, V.A., and Spirin, A.S. Continuous-exchange cell-free protein-synthesizing system: Synthesis of HIV antigen Nef fused with green fluorescent protein. Biochem. Biophys. Res. Commun. (2001): in press.

    Google Scholar 

  • Davis, J., Thompson, D., and Beckler, G.S. Large scale dialysis cell-free system. Promega Notes Magazine No 56 (1996): 14–21.

    Google Scholar 

  • DeVries, J.K., and Zubay, G. DNA-directed peptide synthesis, II. The synthesis of the α-fragment of the enzyme β-galactosidase. Proc. Natl. Acad. Sci. U.S.A. 57 (1967): 1011–1012.

    Article  Google Scholar 

  • Endo, Y., Otsuzuki, S., Ito, K., and Miura, K. Production of an enzymatic active protein using a continuous flow cell-free system. J. Biotech. 25 (1992): 221–230.

    Article  CAS  Google Scholar 

  • Endo, Y., Oka, T., Ogata, K., and Natori, Y. Production of dihydrofolate reductase by an improved continuous flow cell-free translation system using wheat germ extract. Tokishima J. Exp. Med. 40 (1993): (1–2): 13–17.

    CAS  Google Scholar 

  • Kigawa, T., and Yokoyama, S. A continuous cell-free protein synthesis system for coupled transcription-translation. J. Biochem. (Japan) 110 (1991): 166–168.

    CAS  Google Scholar 

  • Kigawa, T., Yabuki, T., Yoshida, Y., Tsutsui, M., Ito, Y., Shibata, T., and Yokoyama, S. Cell-free production and stable-isotope labelling of milligram quantities of proteins. FEBS Lett. 442 (1999):15–19.

    Article  PubMed  CAS  Google Scholar 

  • Kim, D.-M., and Choi, C.-Y. A semicontinuous prokaryotic coupled transcription-translation system using a dialysis membrane. Biotechnol. Prog. 12 (1996): 645–649.

    Article  PubMed  CAS  Google Scholar 

  • Kim, D.-M., and Swartz, J.R. Prolonging cell-free protein synthesis with a novel ATP regeneration system. Biotech. Bioengineering 66 (1999): 180–188.

    Article  CAS  Google Scholar 

  • Kim, D.-M., and Swartz, J.R. Prolonging cell-free protein synthesis by selective reagent additions. Biotech.Prog. 16 (2000): 385–390.

    Article  CAS  Google Scholar 

  • Kolosov, M.I., Kolosova, I.M., Alakhov, V.Y., Ovodov, S.Y., and Alakhov, Y.B. Preparative in vitro synthesis of bioactive human interleukin-2 in a continuous flow translation system. Biotech. Appl. Biochem. 16(1992): 125–133.

    CAS  Google Scholar 

  • Kolb, V.A., Makeyev, E.V., and Spirin, A.S. Folding of firefly luciferase during translation in a cell-free system. EMBO J. 13 (1994): 3631–3637.

    PubMed  CAS  Google Scholar 

  • Kolb, V.A., Makeyev, E.V., Ward, W.W., and Spirin, A.S. Synthesis and maturation of green fluorescent protein in a cell-free translation system. Biotech. Lett. 18 (1996): 1447–1452.

    Article  CAS  Google Scholar 

  • Kolb, V.A., Makeyev, E.V., and Spirin, A.S. Co-translational folding of an eukaryotic multidomain protein in a prokaryotic translation system. J. Biol. Chem. 275 (2000): 16597–16601.

    Article  PubMed  CAS  Google Scholar 

  • Komar, A.A., Kommer, A., Krasheninnikov, I.A., and Spirin, A.S. Cotranslational heme binding to nascent globin chains. FEBS Lett. 326 (1993): 261–263.

    Article  PubMed  CAS  Google Scholar 

  • Komar, A.A., Kommer, A., Krasheninnikov, I.A., and Spirin, A.S. Cotranslational folding of globin. J. Biol. Chem. 272 (1997): 10646–10651.

    Article  PubMed  CAS  Google Scholar 

  • Kudlicki, W., Kramer, G., and Hardesty, B. High efficiency cell-free synthesis of proteins: refinement of the coupled transcription/translation system. Anal. Biochem. 206 (1992): 389–393.

    Article  PubMed  CAS  Google Scholar 

  • Madin, K., Sawasaki, T., Ogasawara, N., and Endo, Y. A highly efficient and robust cell-free protein synthesis system prepared from wheat embryos: Plants apparently contain a suicide system directed at ribosomes. Proc. Natl. Acad. Sci. USA 97 (2000): 559–564.

    Article  PubMed  CAS  Google Scholar 

  • Martemyanov, K.A., Spirin, A.S., and Gudkov, A.T. Synthesis, cloning and expression of genes for antibacterial peptides: cecropin, magainin and bombinin. Biotech. Lett. 18 (1996): 1357–1362.

    Article  CAS  Google Scholar 

  • Martemyanov, K.A., Yarunin, A.S., and Gudkov, A.T. An efficient method for producing gene tandem repeats. Doklady Biochemistry (Russia) 357 (1997a): 158–160.

    Google Scholar 

  • Martemyanov, K.A., Spirin, A.S., and Gudkov, A.T. Direct expression of PCR products in a cell-free transcription/translation system: Synthesis of antibacterial peptide cecropin. FEBS Lett. 414 (1997b):268–270.

    Article  PubMed  CAS  Google Scholar 

  • Martemyanov, K.A., Shirokov, V.A., Kurnasov, O.V., Gudkov, A.T., and Spirin, A.S. Cell-free production of biologically active polypeptides: Application to the synthesis of antibacterial polypeptide cecropin. Protein Expression and Purification (2001): in press.

    Google Scholar 

  • Nirenberg, M.W., and Matthaei, J.H. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polynucleotides. Proc. Natl. Acad. Sci. U.S.A. 47 (1961): 1588–1602.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, N., Kitaoka, Y., Mimura, A., and Takahara, Y. Continuous protein synthesis system with Escherichia coli S30 extract containing endogenous T7 RNA polymerase. Biotech. Lett. 15 (1993): 785–790.

    Article  CAS  Google Scholar 

  • Nishimura, N., Kitaoka, Y., and Niwano, M. Cell-free system derived from heat-shocked Escherichia coli: Synthesis of enzyme protein possessing higher specific activity. J. Ferment. Bioeng. 79 (1995): 131–135.

    Google Scholar 

  • Ryabova, L.A., Ortlepp, S.A., and Baranov, V.I. Preparative synthesis of globin in a continuous cell-free translation system from rabbit reticulocytes. Nucleic Acids Res. 17 (1989): 4412.

    Article  PubMed  CAS  Google Scholar 

  • Ryabova, L.A, Volianik, E.V., Kurnasov, O.D., Spirin, A.S., Wu, Y., and Kramer, F.R. Coupled replication-translation of amplifiable messenger RNA: A cell-free protein synthesis system that mimics viral infection. J. Biol. Chem. 269 (1994): 1501–1505.

    PubMed  CAS  Google Scholar 

  • Ryabova, L.A., Morozov, I.Yu., and Spirin, A.S. Continuous-flow cell-free translation, transcription-translation, and replication-translation systems. In: R. Martin (ed.) Methods in Molecular Biology, Vol. 11: Protein Synthesis: Methods and Protocols, Humana Press Inc., Totowa, NJ, pp. 179–193, 1998.

    Google Scholar 

  • Ryabova, L.A., Desplancq, D., Spirin, A.S., and Plückthun, A. Functional antibody production using cell-free translation: Effects of protein disulfide isomerase and chaperones. Nature Biotechnology 15 (1997): 79–84.

    Article  PubMed  CAS  Google Scholar 

  • Spirin, A.S. Cell-free protein synthesis bioreactor. In: P. Todd, S. K. Sikdar, and M. Beer (eds.) Frontiers in Bioprocessing II, American Chemical Society, Washington, DC, pp. 31–43, 1991.

    Google Scholar 

  • Spirin, A.S. Ribosomes. Kluwer Academic/Plenum Publishers, New York, 1999.

    Book  Google Scholar 

  • Spirin, A.S., Baranov, V.I., Ryabova, L.A., Ovodov, S.Y., and Alakhov, Y.B. A continuous cell-free translation system capable of producing polypeptides in high yield. Science 242 (1988): 1162–1164.

    Article  PubMed  CAS  Google Scholar 

  • Uzawa, T., Yamagishi, A., Ueda, T., Chikazumi, N., Watanabe, K., and Oshima, T. Effects of polyamines on a continuous cell-free protein synthesis system of an extreme thermophile, Thermus thermophilus. J. Biochem. (Japan) 114 (1993): 732–734.

    CAS  Google Scholar 

  • Volyanik, E.V., Dalley, A., McKay, I.A., Keigh, I., Williams, N.S., and Bustin, S.A. Synthesis of preparative amounts of biologically active interleukin-6 using a continuous-flow cell-free translation system. Anal. Biochem. 214 (1993): 289–294.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Spirin, A.S. (2001). Protein Synthesis and Co-Translational Folding in Cell-Free Translation Systems. In: Merten, OW., et al. Recombinant Protein Production with Prokaryotic and Eukaryotic Cells. A Comparative View on Host Physiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9749-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9749-4_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5756-3

  • Online ISBN: 978-94-015-9749-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics