Affinity, Additivity and the Reification of the Bond

  • Stephen J. Weininger
Part of the Boston Studies in the Philosophy and History of Science book series (BSPS, volume 222)


In her unique study of the semiotics of chemistry the chemist and linguist Renée Mestrallet pays particular attention to structural formulas and the characteristics they share with natural languages. As she notes, these formulas can be reduced to just two building blocks, atoms and bonds, and she explores the similarities and differences between these symbols and alphabetic characters, the fundamental building blocks of most natural languages (Mestrallet, Communication). In Mestrallet’s analysis atoms and bonds thus acquire representational parity. One might even accord a higher status to bonds because to an increasing extent the presence of atoms in molecular formulas is only implied by the intersection of lines that represent bonds (Fig. 1). This trend has been nicely illustrated in Pierre Laszlo and Roald Hoffmann’s exploration of the various representations of camphor (Hoffmann and Laszlo, “Representation”).


Bond Energy American Chemical Society Thermochemical Data Fundamental Building Block Alphabetic Character 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adkins, Homer, and Elmer Wade Adams. “The Relation of Structure, Affinity and Reactivity in Acetal Formation.” Journal of the American Chemical Society 47 (1925): 1368–78.CrossRefGoogle Scholar
  2. Auwers, K., and W. A. Roth. “Über Beziehungen zwischen Konstitution und Verbrennunswärme ungesattigter Kohlenwasserstoffe.” Berichte der deutschen chemischen Gesellschaft 43 (1910): 1063–64.CrossRefGoogle Scholar
  3. Barkan, Diana: Walther Nernst and the Transition to Modern Physical Science. Cambridge: Cambridge University Press, 1999.Google Scholar
  4. Berger, Jutta. “Chemische Mechanik und Kinetik: Die Bedeutung der mechanischen Wärmetheorie fur die Theorie chemischer Reaktionen.” Annals of Science 54 (1997): 567–84.CrossRefGoogle Scholar
  5. Berger, Jutta. “Grenzgänge zwischen Physik und Chemie: Thermodynamik und chemischer Kinetik — kein Happy-End im 19. Jahrhundert.” Centaurus 41 (1999): 253–79.CrossRefGoogle Scholar
  6. Brock, William. The Norton History of Chemistry. New York: W. W. Norton, 1993.Google Scholar
  7. Brunold, Charles. Problème de l’Affinité et l’Atomistique. Etude du rapprochement actuel de la Physique et de la Chimie. Paris: Masson, 1930.Google Scholar
  8. Brunold, Charles, Charles.“Chemical Bond Approach Project.” Chemical Systems. St. Louis: Webster Division, McGraw-Hill, 1964.Google Scholar
  9. Clarke, F. W. “A Thermochemical Constant.” Journal of the American Chemical Society 24 (1902): 882–92.CrossRefGoogle Scholar
  10. Clarke, F. W. “A New Law in Thermochemistry.” Proceedings of the Washington Academy of Sciences 5 (1903): 1–37.Google Scholar
  11. Cochrane, Rexmond C. Measures for Progress: A History of the National Bureau of Standards. Washington, DC: National Bureau of Standards, U.S. Department of Commerce, 1966.Google Scholar
  12. Cohen, Julius B. Organic Chemistry for Advanced Students. vol. 2. New York: Longmans, Green, 1913.Google Scholar
  13. Cunningham, Andrew, ed. The Science and Culture of Nutrition, 1840–1940. Amsterdam: Rodopoi, 1995.Google Scholar
  14. Dolby, R. G. A. “Thermochemistry versus Thermodynamics: The Nineteenth Century Controversy.” History of Science 22 (1984): 375–400.Google Scholar
  15. Donder, Théophile de. The Thermodynamic Theory of Affinity: A Book of Principles. Stanford: Stanford University Press, 1936.Google Scholar
  16. Glansdorff, P., and I. Prigogine. “Théophile de Donder et la Découverte de l’Affinité.” Bulletin de la Société Mathématique de Belgique 31 (1979): 41–46.Google Scholar
  17. Goupil, Michelle. Du Flou au Clair? Histoire de l’Affinité chimique de Cardan à Prigogine. Paris: Editions du Comité des Travaux historiques et scientifiques, 1991.Google Scholar
  18. Hartung, Walter H., and Homer Adkins. “Reactivity and Structure in Acetal Formation. Il.” Journal of the American Chemical Society 49 (1927): 2517–23.CrossRefGoogle Scholar
  19. Henderson, Lawrence J. “The Heats of Combustion of Atoms and Molecules.” Journal of Physical Chemistry 9 (1905): 40–56.CrossRefGoogle Scholar
  20. Hoffmann, Roald, and Pierre Laszlo. “Representation in Chemistry.” Angewandte Chemie. International Edition in English 30 (1991): 1–16.CrossRefGoogle Scholar
  21. Kharasch, Morris S., and Ben Sher. “The Electronic Conception of Valence and Heats of Combustion of Organic Compounds.” Journal of Physical Chemistry 29 (1925): 625–58.CrossRefGoogle Scholar
  22. Kragh, Helge. “Julius Thomsen and Classical Thermochemistry.” British Journal for the History of Science 17 (1984): 255–72.CrossRefGoogle Scholar
  23. Kragh, Helge, and Stephen J. Weininger. “Sooner Silence than Confusion: The Tortuous Entry of Entropy into Chemistry.” Historical Studies in the Physical and Biological Sciences 27 (1996): 91–130.CrossRefGoogle Scholar
  24. Le Bas, Gervaise. “A Relation between the Volumes of the Atoms of Certain Organic Compounds at the Melting Point and Their Valencies. Interpretation by means of the Barlow-Pope Theory.” Journal of the Chemical Society, Transactions 91 (1907): 112–15.Google Scholar
  25. Le Bas, Gervaise. “The Unit-Stere Theory: Demonstration of a Natural Relationship between the Volumes of the Atoms in Compounds under Corresponding Conditions and that of Combined Hydrogen.” Parts I and II. Philosophical Maga=ine$14th ser. 1907 (14): 324–50; 1908 (16): 60–92.Google Scholar
  26. Médard, Louis A., and Henri Tachoire. Histoire de la Thermochimie. Prélude à la thermodynamique chimique. Aix-en-Provence: Publications de l’Université de Provence, 1994.Google Scholar
  27. Mestrallet Guerre, Renée. Communication, Linguistique et Sémiologie. Etudes sémiologique des systèmes de signes de la chimie. Thesis, Département de Langues Moderne, Universitat Autonoma de Barcelona, 1980.Google Scholar
  28. Meyer, Lothar. “Die bisherige Entwicklung der Affinitätslehre.” Zeitschrift für physikalische Chemie 1 (1887): 134–44.Google Scholar
  29. Meyer, Lothar. Outlines of Theoretical Chemistry. Translated by P. Phillips Bedson and W. Carleton Williams. London: Longmans, Green, 1892.Google Scholar
  30. Nye, Mary Jo. From Chemical Philosophy to Theoretical Chemistry: Dynamics of Matter and Dynamics of Disciplines, 1800–1950. Berkeley: University of California Press, 1993.Google Scholar
  31. Nye, Mary Jo. “From Student to Teacher: Linus Pauling and the Reformulation of the Principles of Chemistry in the 1930s.” In Communicating Chemistry: Textbooks and Their Audiences. Edited by Anders Lundgren and Bernadette Bensaude-Vincent, 397–414. Canton, MA: Watson, 2000.Google Scholar
  32. Ogilvie, J. F. “The Nature of the Chemical Bond–1990: There Are No Such Things as Orbitals.” Journal of Chemical Education 67 (1990): 280–89.CrossRefGoogle Scholar
  33. Patten, H. E., and W. R. Mott. “A Criticism of Clarke’s New Law in Thermochemistry.” Journal of the American Chemical Society 25 (1904): 882–92.Google Scholar
  34. Pauling, Linus. “The Nature of the Chemical Bond. IV. The Energy of Single Bonds and the Relative Electronegativity of Atoms.” Journal of the American Chemical Society 54 (1932): 3570–82.CrossRefGoogle Scholar
  35. Pauling, Linus. The Nature of the Chemical Bond and the Structure of Molecules and Crystals. Ithaca: Cornell University Press, 1939.Google Scholar
  36. Pauling, Linus. “The Nature of the Theory of Resonance.” in The Nature of the Chemical Bond and the Structure of Molecules and Crystals. 3d ed., 215–220. Ithaca: Cornell University Press, 1960.Google Scholar
  37. Pauling, Linus.“The Nature of the Chemical Bond–1992.” Journal of Chemical Education 69 (1992): 519–21.Google Scholar
  38. Pauling, Linus, and J. Sherman. “The Nature of the Chemical Bond. Vi. Calculation from Thermochemical Data of the Energy of Resonance of Molecules among Several Electronic Structures.” Journal of Chemical Physics 1 (1933): 606–17.Google Scholar
  39. Pauling, Linus, and Don M. Yost. “The Additivity of the Energies of Normal Covalent Bonds.” Proceedings of the National Academy of Sciences 18 (1932): 414–16.CrossRefGoogle Scholar
  40. Richards, Theodore W. “Recent Investigations in Thermochemistry.” Journal of the American Chemical Society 31 (1909): 1275–83.CrossRefGoogle Scholar
  41. Richards, Theodore W., and Frederick Barry. “Heats of Combustion of Aromatic Hydrocarbons and cyclo-Hexane.” Journal of the American Chemical Society 37 (1915): 99301020.Google Scholar
  42. Russell, C. A. The History of Valency. Leicester: Leicester University Press, 1971.Google Scholar
  43. Sackur, Otto. Über die Bedeutung der Elektronentheorie für die Chemie. Antritts-V orlesung, gehalten =ur Erlangung der venia legendi für Chemie an der Universität Breslau. Halle: Wilhelm Knapp, 1905.Google Scholar
  44. Sackur, Otto. Die chemische Affinität und ihre Messung. Braunschweig: Friedrich Vieweg, 1908.Google Scholar
  45. Sackur, Otto. Lehrbuch der Thermochemie und Thermodynamik. Berlin: Julius Springer, 1912. A Textbook of Thermo-chemistry and Thermodynamics. Translated and revised by G. E. Gibson. London: Macmillan, 1917.Google Scholar
  46. Servos, John W. Physical Chemistry from Ostwald to Pauling: The Making of a Science in America. Princeton: Princeton University Press, 1990.Google Scholar
  47. Stewart, Alfred W. Stereochemistry. 2d ed. London: Longmans, Green, 1919.Google Scholar
  48. Sutcliffe, Brian T. “The Development of the Idea of a Chemical Bond.” International Journal of Quantum Chemistry 58 (1996): 645–55.CrossRefGoogle Scholar
  49. Swietoslawski, W. “The Thermochemistry of Hydrocarbons according to P. W. Zubow’s Data.” Journal of the American Chemical Society 42 (1920): 131–221.Google Scholar
  50. Thomsen, Julius. “F. W. Clarkes neues thermochemisches Gesetz.” Zeitschrift für physikalische Chemie, 43 (1903): 487–93.Google Scholar
  51. Traube, I. “Valenz, Lichtbrechung und Volumen.” Parts 1–3. Berichte der deutschen chemischen Gesellschaft 40 (1907): 130–39, 723–33, 734–36.Google Scholar
  52. van’t Hoff, J. H. “The Relation of Physical Chemistry to Physics and Chemistry.” Journal of Physical Chemistry 9 (1905): 81–89.CrossRefGoogle Scholar
  53. Weinberg, A. v. “Zum Benzol-Problem.” Berichte der deutschen chemischen Gesellschaft 53 (1920): 1353–58.CrossRefGoogle Scholar
  54. Weininger, Stephen J. “’What’s in a Name?’ From Designation to Denunciation in the Nonclassical Ion Controversy.” Bulletin for the History of Chemistry 25 (2000).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Stephen J. Weininger
    • 1
  1. 1.Department of Chemistry and BiochemistryWorcester Polytechnic InstituteUSA

Personalised recommendations