Advertisement

Sea Ice Dynamics Models

  • Robert S. Pritchard
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 94)

Abstract

Four sea ice dynamics models (elastic-plastic, viscous-plastic, elastic-viscousplastic, and anisotropic elastic-plastic) are reviewed, with the goal of introducing common terminology and notation. Thickness distribution is used to describe ice conditions, which are also approximated by a two-layer model and generalized by an oriented thickness distribution. Strength is parameterized by equating work dissipated by gravitational potential energy changes and by frictional sliding of the ice sheet into the sail and keel of a ridge. Numerical schemes now used to integrate the models are briefly described. Scaling of external forces is discussed.

Keywords

Yield Surface Thickness Distribution Gravitational Potential Energy Change Ocean Dynamic Model Pseudo Time Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albright, M. 1980. Geostrophic wind calculations for Aidjex, in Sea Ice Processes and Models, ed. by R. S. Pritchard, U. Washington Press, Seattle, pp. 402–409.Google Scholar
  2. Bathe, K.-J., 1982. Finite Element Procedures in Engineering Analysis, Prentice Hall, Englewood Cliffs.Google Scholar
  3. Colony, R., and Pritchard, R. S. 1975. Integration scheme for an elastic-plastic sea ice model, in Proceedings of the 12th Annual Meeting of the Society of Engineering Science, University of Texas at Austin, TX, pp. 953–963.Google Scholar
  4. Coon, M. D., Maykut, G. A., Pritchard, R. S., Rothrock, D. A., and Thorndike, A. S. 1974. Modeling the pack ice as an elastic-plastic material, in Aidjex Bulletin, 24, U. Washington, Seattle, WA, pp. 1–105.Google Scholar
  5. Drucker, D. C. 1959. A definition of stable inelastic material, J. Appl. Mech., 26, pp. 101–106.MathSciNetzbMATHGoogle Scholar
  6. Flato, G.M., and Hibler, W. D. III 1992. Modeling pack ice as a cavitating fluid, J. Phys. Oceanogr., 22, pp. 626–651.ADSCrossRefGoogle Scholar
  7. Geiger, C.A., Hibler, W. D. III, and Ackley, S. F. 1992. Large-scale sea ice drift and deformation: Comparison between models and observations in the western Weddel Sea during 1992, J. Geophys. Res., 103 (10), pp. 21,893–21,913.ADSGoogle Scholar
  8. Gray, J. M. N. T. 1999. Loss of hyperbolicity and ill-posedness of the viscous-plastic sea ice rheology in uniaxial divergent flow, J. Phys. Ocean., 29, pp. 2920–2929.ADSCrossRefGoogle Scholar
  9. Gray, J. M. N. T., and Killworth, P. D. 1996. Sea ice ridging schemes, J. Phys. Ocean., 26, pp. 2420–2428.ADSCrossRefGoogle Scholar
  10. Gray, J. M. N. T., and Morland, L. 1994. A two-dimensional model for the dynamics of sea ice, Phil. Trans. Roy. Soc. A, 347, pp. 219–290.ADSzbMATHCrossRefGoogle Scholar
  11. Hibler, W.D., III. 1979. A dynamic thermodynamic sea ice model, J. Phys. Ocean., 9, pp. 817–846.ADSCrossRefGoogle Scholar
  12. Hibler, W.D.,III. 1986. Ice Dynamics, in The Geophysics of Sea Ice, ed. by N. Untersteiner, Plenum Press, New York, pp. 577–640.Google Scholar
  13. Hibler, W.D. III., and Ip, C. F. 1995. The effect of sea ice rheology on arctic buoy drift, in Ice Mechanics 1995, AMD, ed. by J.P. Dempsey, and Y. D. S. Rajapakse, Am. Soc. Mech. Engr., New York, pp. 255–264.Google Scholar
  14. Hibler, W. D., III, Heil, P. Lytle, V. I. 1998. On simulating high-frequency variability in Antarctic sea-ice dynamics models, Annals of Glaciology, 27, pp. 443–448.ADSGoogle Scholar
  15. Hopkins, M. A. 1998. Four stages of pressure ridging, J. Geophys. Res., 103 (C10), pp. 21,883–21,891.MathSciNetADSCrossRefGoogle Scholar
  16. Hunke, E. C., and Dukowicz, J. K. 1997. An elastic-viscous-plastic model for sea ice dynamics., J. Phys. Oceanogr., 27, pp. 1849–1867.ADSCrossRefGoogle Scholar
  17. Ip, C. F. 1993. Numerical investigation of different rheologies on sea ice dynamics, PhD thesis, Dartmouth College, Hanover, NH.Google Scholar
  18. Koiter, W. T. 1953. Stress-strain relations, uniqueness and variational theorems for elastic, plastic materials with a singular yield surface, Q. Appl. Math., 11, pp. 350–354.MathSciNetzbMATHGoogle Scholar
  19. Kollé, J. J., and Pritchard, R. S. 1983. A comparison of two sea ice trajectory models with AIDJEX observations, J. Energy Res. Tech, 105 (3), pp. 346–351.CrossRefGoogle Scholar
  20. Kwok, R., Cunningham, G. F., LaBelle-Hamer, N., Holt, B., and Rothrock, D. A. 1999. Sea ice thickness from high-resolution SAR imagery, EOS, AGU, 80 (42), pp. 495–497.ADSCrossRefGoogle Scholar
  21. Leavitt, E. 1980. Surface-based air stress measurements made during Aidjex, in Sea Ice Processes and Models, ed. by R. S. Pritchard, U. Washington Press, Seattle, pp. 419–429.Google Scholar
  22. McPhee, M. G. 1975. Ice ocean momentum transfer for the Aidjex ice model, Aidjex Bulletin, 29, pp. 93–111Google Scholar
  23. McPhee, M. G. 1978. A simulation of inertial oscillations in drifting pack ice, Dynamics of Atmospheres and Oceans, 2, pp. 107–122.ADSCrossRefGoogle Scholar
  24. Pedlosky, J. 1979. Geophysical Fluid Dynamics, Springer-Verlag, New York.zbMATHCrossRefGoogle Scholar
  25. Polyakov, I. V., Kulakov, I. Yu., Kolesov, S. E., Dmitriev, N. Eu., Pritchard, R. S., Driver, D., and Naumov, A. K. 1998. Coupled sea ice-ocean model of the Arctic Ocean, J. Offshore Mech. and Arctic Engr., 120, pp. 77–84.CrossRefGoogle Scholar
  26. Pritchard, R. S. 1975. An elastic-plastic constitutive law for sea ice, J. Appl. Mech., 42 (E2), pp. 379–384.ADSzbMATHCrossRefGoogle Scholar
  27. Pritchard, R. S. 1977. The effect of strength on simulations of sea ice dynamics, in Proceedings of the Fourth International Conference on Port and Ocean Engineering Under Arctic Conditions, ed. by D. B. Muggeridge, Memorial University of Newfoundland, St. Johns, Newfoundland, pp. 494–505.Google Scholar
  28. Pritchard, R. S. 1981. Mechanical behavior of pack ice, in Mechanics of Structured Media, ed. by A. P. S. Selvadurai, Elsevier, Amsterdam, pp. 371–405.Google Scholar
  29. Pritchard, R.S. 1993. Sea ice constitutive behavior and under-ice noise, in Natural Physical Sources of Underwater Sound, ed. by B. Kerman, Kluwer Academic Press, The Netherlands, pp. 591–610.CrossRefGoogle Scholar
  30. Pritchard, R. S. 1998. Ice conditions in an anisotropic sea ice dynamics model, Intl. J. Offshore and Polar Engr, 8 (1), pp. 9–15.MathSciNetGoogle Scholar
  31. Pritchard, R. S. 1999. Scale effects and sea ice dynamics models, in Ice in Surface Waters, ed. by H.-T. Shen, A. A. Balkema, Rotterdam, pp. 1041–1048.Google Scholar
  32. Pritchard, R. S., Reimer, R. W., and Coon, M. D. 1979. Ice flow through straits, in Proceedings of POAC79, Vol.3, Trondheim, Norway, pp. 61–74.Google Scholar
  33. Pritchard, R. S., Rutland, C. J., and Knoke, G. S. 1983. Dynamics of the sea ice cover, Flow Industries, Kent, WA.Google Scholar
  34. Pritchard, R. S., Mueller, A. C., Hanzlick, D. J., and Yang, Y.- S. 1990. Forecasting ice edge motion in the Bering Sea, J. Geophys. Res., 95 (1), pp. 775–788.ADSCrossRefGoogle Scholar
  35. Rothrock, D. A. 1975. The energetics of the plastic deformation of pack ice by ridging, J. Geophys. Res., 80 (33), pp. 4514–4519.ADSCrossRefGoogle Scholar
  36. Schreyer, H. L., and Neilsen, M. K. 1996. Analytical and numerical tests for loss of material stability, Int’l. J. for Numerical Methods in Engineering, 39, pp. 1721–1736.MathSciNetADSzbMATHCrossRefGoogle Scholar
  37. Shinohara, Y., A redistribution function applicable to a dynamic model of sea ice, J. Geophys. Res., 95 (C8), pp. 13,423–13,431.Google Scholar
  38. Song, X. 1994. Numerical investigation of a viscous-plastic sea ice forecasting model, MS thesis, Dartmouth College, Hanover, NH.Google Scholar
  39. Steele, M., Zhang, J., Rothrock, D., and Stern, H. 1997. The force balance of sea ice in a numerical model of the Arctic Ocean, J. Geophys. Res., 102 (C9), pp. 21,061–21,079.ADSCrossRefGoogle Scholar
  40. Stern, H. L., Rothrock, D. A., and Kwok, R. 1995. Open water production in arctic sea ice: Satellite measurements and model parameterizations, J. Geophys. Res., 100 (C10), pp. 20,601–20,612.ADSCrossRefGoogle Scholar
  41. Thorndike, A. S., Rothrock, D. A., Maykut, G. A., and Colony, R. 1975. The thickness distribution of sea ice, J. Geophys. Res., 80 (33), pp. 4501–4513.ADSCrossRefGoogle Scholar
  42. Tremblay, L.-B., and Mysak, L. A. 1997. Modelling sea ice as a granular material, including the dilatancy effect, J. Phys. Ocean., 27 (11), pp. 2342–2360.ADSCrossRefGoogle Scholar
  43. Zhang, J. 1993. A high resolution ice-ocean model with imbedded mixed layer, PhD thesis, Dartmouth College, Hanover, NH.Google Scholar
  44. Zhang, J., and Rothrock, D. 2000. Modeling arctic sea ice with an efficient plastic solution, J. Geophys. Res., 105 (C2), pp. 3325–3338.ADSCrossRefGoogle Scholar
  45. Zhang, J., and Hibler, W. D. III. 1997. On an efficient numerical method for modeling sea ice dynamics, J. Geophys. Res., 102, pp. 8691–8702.ADSCrossRefGoogle Scholar
  46. Zhang, J., Rothrock, D. A., and Steele, M. 1998b. Warming of the Arctic Ocean by a strengthened Atlantic inflow: Model results, Geophys. Res. Lett., 25, pp. 1745–1748.ADSCrossRefGoogle Scholar
  47. Zhang, J., Hibler, W. D. III, Steele, M., and Rothrock, D. A. 1998a. Arctic ice-ocean modeling with and without climate restoring, J. Phys. Ocean., 28, pp. 1745–1748.Google Scholar
  48. Zienkiewicz, O. C. 1977. The Finite Element Method, McGraw-Hill, London.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Robert S. Pritchard
    • 1
  1. 1.IceCasting, Inc.San RafaelUSA

Personalised recommendations