On Fracture of Warm Ice

  • Gregory J. Rodin
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 94)


The effect of grain boundary softening on the fracture toughness of warm freshwater ice is analyzed based on micromechanical considerations. This approach allows one to relate statistical and size effects to microstructural properties, and identify simple scaling rules for the fracture toughness. Those rules suggest that the test data for lake ice reported by Dempsey et al. (1999a) may not be prone to size effects, other than those dictated by linear elastic fracture mechanics.


Fracture Toughness Process Zone Linear Elastic Fracture Mechanic Periodic Array Fracture Toughness Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Tawab, K. and Rodin, G. J. 1998. Fracture size effects and polycrystalline inhomogeneity. Int. J. Fracture 93, 247–259.CrossRefGoogle Scholar
  2. Ballarmi, R., Mullen, R. L. and Heuer, A. H. 1999. The effects of heterogeneity and anisotropy on the size effect in cracked polycrystalline films. Int. J. Fracture 95, 19–39.CrossRefGoogle Scholar
  3. Barnes, P., Tabor, D. and Walker, J. C. F. 1971. The friction and creep of polycrystalline ice. Proc. R. Soc. Lond. A. 324, 127–155.ADSCrossRefGoogle Scholar
  4. Batchelor, G. K. and O’Brien, R. W. 1977. Thermal or electrical conduction through a granular material. Proc. R. Soc. Lond. A. 355, 313–333.ADSCrossRefGoogle Scholar
  5. Bažant, Z. P. 1984. Size effect in blunt fracture: concrete, rock, metal. ASCE J. Engng. Mech. 110, 518–535.CrossRefGoogle Scholar
  6. Bentley, D. L., Dempsey, J. P., Sodhi, D. S. and Wei, Y. 1989. Fracture toughness of S2 columnar freshwater ice: large scale DCB tests. Cold Regions Sci. Tech. 17, 7–20.CrossRefGoogle Scholar
  7. Carpinteo, A. 1982. Notch sensitivity and fracture testing of aggregate materials. Engng. Fracture Mech. 16, 467–481.CrossRefGoogle Scholar
  8. Dempsey, J. P., DeFranco, S. J., Adamson, R. M. and Mulmule, S. V. 1999a. Scale effects on the in-situ tensile strength and fracture of ice. Part I: Large grained freshwater ice at Spray Lakes Reservoir, Alberta. Int. J. Fracture 95, 325–345.CrossRefGoogle Scholar
  9. Dempsey, J. P., Adamson, R. M. and Mulmule, S. V. 1999b. Scale effects on the in-situ tensile strength and fracture of ice. Part II: First-year sea ice at Resolute, N. W. T. Int. J. Fracture 95, 347–366.CrossRefGoogle Scholar
  10. Dib, M. W. and Rodin, G. J. 1993. Three-dimensional analysis of creeping polycrystals using periodic arrays of truncated octahedra J. Mech Phys. Solids 41, 125–144.CrossRefGoogle Scholar
  11. Gandhi, C. and Ashby, M. F. 1979. Fracture-mechanism maps for materials which cleave: F.C.C., B.C.C., and H.C.P. metals and ceramics. Acta Met. 27, 1565–1602.CrossRefGoogle Scholar
  12. Gent, A. N. and Lindley, P. B. 1959. Internal rupture of bonded rubber cylinders in tension. Proc. R. Soc. Lond. A. 249, 195–205.ADSCrossRefGoogle Scholar
  13. Ghahremani, F. 1980. Effect of grain boundary sliding on steady creep of polycrystals. Int. J. Solids Structures 16, 847–862.zbMATHCrossRefGoogle Scholar
  14. Hillerborg, A., Modeer, M. and Petersson, P. E. 1976. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research 6, 773–782.CrossRefGoogle Scholar
  15. Hsia, K. J., Argon, A. S. and Parks, D. M. 1991. Effects of grain boundary sliding on creep-constrained boundary deformation and creep deformation. Mechanics of Materials 11, 43–62.CrossRefGoogle Scholar
  16. Kanninen, M. F. and Popelar, C. H. 1985. Advanced Fracture Mechanics. Oxford University Press.zbMATHGoogle Scholar
  17. McClintock, F. A. 1971. Plasticity aspects of fracture, in Fracture III, ed. H. Liebowitz. Academic Press.Google Scholar
  18. Phan-Thien, N. and Karihaloo, B. L. 1982. Effective moduli of particulate solids. ZAMM, 62, 183–190.zbMATHCrossRefGoogle Scholar
  19. Rodin, G. J. 1996. Squeeze film between two spheres in a power-law fluid. J. Non-Newton Fluid Mech. 63, 141–152.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Gregory J. Rodin
    • 1
  1. 1.Texas Institute for Computational and Applied MathematicsThe University of Texas at AustinAustinUSA

Personalised recommendations