Advertisement

Sea Ice Fracture and Friction

  • P. R. Sammonds
  • M. A. Rist
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 94)

Abstract

The fracture and friction of sea ice are discussed and comparisons made with laboratory-grown freshwater ice. The unusual mechanical properties of sea ice, the independence of shear fracture stress on normal stress and the shear fault angle that tends to 45°, observed over a wide range of conditions, suggest that it is inappropriate to apply Coulomb fracture theory generally to sea ice. Direct and inferred microcrack statistics suggest that rock mechanics microcracks models are also inappropriate for ice. Instead it is proposed that a slip-weakening model can capture the essential mechanical properties of ice in shear, including the transition from brittle to ductile behaviour with increasing normal stress and temperature, and the transition from stable frictional sliding to stick-slip behaviour, necessary for modelling sea ice dynamics.

Keywords

Acoustic Emission Shear Fracture Triaxial Test Wing Crack Shear Fault 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archard, J. 1957. Elastic deformation and the laws of friction, Proc. Roy. Soc. Lond., ser. A243, 190–205.ADSCrossRefGoogle Scholar
  2. Ashby, M. & Hallam, S. 1986. The failure of brittle solids containing cracks under compressive stress states, Acta metall, 34, 497–510.CrossRefGoogle Scholar
  3. Barnes, P., Tabor D., & Walker J. 1971. The friction and creep of polycrystalline ice, Proc. Roy. Soc. Lond. ser. A324, 127–155.ADSCrossRefGoogle Scholar
  4. Beeman, M, Durham W. & Kirby S. 1988. Friction of ice, J. Geophys. Res., 93, 7625–7633.ADSCrossRefGoogle Scholar
  5. Brace, W., Paulding, B. & Scholz, C. 1966. Dilatancy in the fracture of crystalline rocks. J. Geophys. Res. 71, 3939–3953.ADSCrossRefGoogle Scholar
  6. Dempsey, J. 2000. Research trends in ice mechanics. Int. J. Solids & Struct., 37, 131–153.MathSciNetzbMATHCrossRefGoogle Scholar
  7. Durham, W., Heard, H. & Kirby S. 1983. Experimental deformation of polycrystalline H2O ice at high pressures and low temperatures. J. Geophys. Res., 88, 377–392.ADSCrossRefGoogle Scholar
  8. Gagnon, R. & Gammon P. 1995. Triaxial experiments on iceberg and glacier ice, J. Glaciol., 41, 528–540.ADSGoogle Scholar
  9. Gold, L. 1997. Statistical characteristics for the type and length of deformation-induced cracks in columnar-grained ice, J. Glaciol., 43, 311–320.ADSGoogle Scholar
  10. Henderson, J. & Main I. 1992. A simple fracture mechanical model for the evolution of seismicity, Geophys. Res. Letts., 19, 365–368.ADSCrossRefGoogle Scholar
  11. Holcomb, D. 1978. A quantitative model of dilatancy in dry rock and its application to Westerly granite. J. Geophys. Res. 83, 4941–4950.ADSCrossRefGoogle Scholar
  12. Hopkins, M. 1998. Four stages of pressure ridging. J. Geophys. Res. 103, 21,883–21891.Google Scholar
  13. Jones, D., Kennedy F. & Schulson E. 1991 The kinetic friction of saline ice against itself at low sliding velocities, Ann. Glaciol., 15, 242–246.ADSGoogle Scholar
  14. Li, V. 1987. Mechanics of shear rupture. In: Fracture Mechanics of Rock (ed. B.K. Atkinson) Academic Press, pp. 351–428.Google Scholar
  15. Main L, Meredith P., Sammonds P. & C. Jones. 1990. Influence of fractal flaw distribution on rock deformation in the brittle field, In Deformation Mechanisms, Rheology and Tectonics (ed. R.J. Knipe & E.H. Rutter), Geol. Soc. Lond. Spec. Pub. No. 54, pp. 71–79.Google Scholar
  16. Murrell S., Sammonds P. & Rist M. 1991. Strength and failure modes of pure and multiyear sea ice under triaxial loading. In Ice-Structure Interaction, IUTAM-IAHR Symposium St. John’s, Newf’d. (ed. S. Jones) pp. 339–362, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  17. Nixon, W. 1996. Wing crack models of the brittle compressive failure of ice, Cold Reg. Sci. Technol., 24, 41–55.CrossRefGoogle Scholar
  18. Ohnaka, M. & Shen L.-F. 1999. Scaling of the shear rupture process from nucleation to dynamic propagation. J. Geophys. Res., 104, B1, 817–844.ADSCrossRefGoogle Scholar
  19. Palmer, A. & Rice, J. 1973. The growth of slip surfaces in the progressive failure of over-consolidated clay. Proc. Roy. Soc. Lond., A 332, 527–548.ADSzbMATHCrossRefGoogle Scholar
  20. Paterson, M. 1978. Experimental Rock Deformation, Springer-Verlag, Berlin.zbMATHCrossRefGoogle Scholar
  21. Rist, M. 1997. High stress ice fracture and friction, J. Phys. Chem. B, 101(32), 6263–6266.CrossRefGoogle Scholar
  22. Rist, M., Sammonds P., Murrell S., Meredith P., Doake C, Oerter H. & Matsuki K. 1999. Experimental and theoretical fracture mechanics applied to Antarctic ice fracture and surface crevassing, J. Geophys. Res 104, 2972–2987.ADSCrossRefGoogle Scholar
  23. Rist, M. & Murrell S. 1994. Ice triaxial deformation and fracture, J. Glaciol., 40, 305.ADSGoogle Scholar
  24. Rist, M., Jones, S. & Slade T. 1994. Microcracking and shear fracture in ice, Ann. Glaciol., 19, 131–137.ADSGoogle Scholar
  25. Rist, M. & Murrell S. 1991. Examination deformation behaviour of poly-crystalline ice. In: Ice Tech. for Polar Ops., pp. 91–102, Inst. Comp. Mech., Southampton, England.Google Scholar
  26. Sammond, P., Murrell S. & Rist M. 1998. Fracture of multiyear sea ice. J. Geophys. Res. 103, C10, 21,795–21,815.ADSGoogle Scholar
  27. Sammonds, P. & Ohnaka, M. 1998. Evolution of microseismicity during frictional sliding, Geophys. Res. Letts 25, 699–702.ADSCrossRefGoogle Scholar
  28. Sammonds, P., Meredith, P. & Main, I. 1992. Role of pore fluids in the generation of seismic precursors to shear fracture, Nature, 359, 228–230.ADSCrossRefGoogle Scholar
  29. Sammonds, P., Murrell S. & Rist M. 1989. Fracture of multi-year sea ice under triaxial stresses. Trans. ASME, J. Offshore Mech. and Arctic Engng, 111, 258–263.CrossRefGoogle Scholar
  30. Schulson, E. sub. On compressive shear faulting in ice: coulombic vs plastic faults.Google Scholar
  31. Schulson, E., Iliescu, D., & Renshaw, C. 1999. On the initiation of shear faults during brittle compressive failure. J. Geophys. Res. 104, 695–705.ADSCrossRefGoogle Scholar
  32. Schulson, E. & Gratz, E. 1999. The brittle compressive failure of orthotropic ice under triaxial loading. Acta mater. 47, 745–755.CrossRefGoogle Scholar
  33. Weiss, J. & Gay, M. 1998. Fracturing of ice under compression creep as revealed by a multifractal analysis. J. Geophys. Res. 103, 24,005–24,016.ADSCrossRefGoogle Scholar
  34. Weiss, J., Lahaie, F. & Grasso, J. 2000. Statistical analysis of dislocation dynamics during viscoplastic deformation. J. Geophys. Res. 105, 433–442.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • P. R. Sammonds
    • 1
  • M. A. Rist
    • 2
  1. 1.Department of Geological SciencesUniversity College LondonLondonEngland
  2. 2.Department of Materials ScienceUniversity of CambridgeCambridgeEngland

Personalised recommendations