Advertisement

Towards Bridging Scale-Space and Multiscale Frame Analyses

  • Yufang Bao
  • Hamid Krim
Part of the Computational Imaging and Vision book series (CIVI, volume 19)

Abstract

We address a well known problem in nonlinear image diffusion techniques, namely a premature loss of texture information. We do so by first determining that it is due to unaccounted correlation structure in the image. We subsequently propose a solution based on a nonlinear theme of a wavelet frame-based technique. This, by the same token establishes a theoretical bridge between the scale space methodology and the multiscale analysis approach. We provide examples to illustrate the effectiveness of the proposed approach.

Keywords

Scale Space Subdivision Scheme Nonlinear Diffusion Haar Wavelet Linear Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bao, Y. and Krim, H. (2001). Nonlinear diffusion and wavelet denoising. Journal paper. In Preparation. Google Scholar
  2. Crouse, M. S., Nowak, R. D., and Baraniuk, R. G. (1997). Signal estimation using wavelet-markov models. In Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing — I CA SSP ’97, Munich, Germany.Google Scholar
  3. Donoho, D. L. and Johnstone, I. M. (1992). Ideal spatial adaptation by wavelet shrinkage. preprint Dept. Stat., Stanford Univ.Google Scholar
  4. Koendrink, J. J. (1987). The structure of images. Biol. Cybern., 50:363–370.CrossRefGoogle Scholar
  5. Krim, H. and Bao, Y. (1999). Nonlinear diffusion: A probabilistic view. In ICIP, Kobe, Japan, 1999. Google Scholar
  6. Krim, H. and Bao, Y. (2000). Smart nonlinear diffusion: A probabilistic approach. Journal paper. Submitted to PAMI. Google Scholar
  7. Krim, H. and Pesquet, J.-C. (1995). On the Statistics of Best Bases Criteria, volume Wavelets in Statistics of Lecture Notes in Statistics. Springer-Verlag.Google Scholar
  8. Krim, H. and Schick, I. (1999). Minimax description length for signal denoising and optimized representation. IEEE Trans. on Information Theory. IEEE Trans. on IT Special Issue, Eds. H. Krim, W. Willinger, A. Iouditski and D. Tse.Google Scholar
  9. Leporini, D., Pesquet, J.-C., and Krim, H. (1999). Best Basis Representation with Prior Statistical Models, chapter 11. Lecture Notes in Statistics. Springer-Verlag.Google Scholar
  10. Mallat, S.(1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Patt. Anal. Mach. Intell., PAMI-11:674–693.zbMATHCrossRefGoogle Scholar
  11. Mallat, S. (1997). A Wavelet Tour of Signal Processing. Academic Press, Boston.Google Scholar
  12. Perona, P. and Malik, J. (1988). A network for multiscale image segmentation. In IEEE Int. Symp. on Circuits and Systems, pages 2565–2568, Helsinki.Google Scholar
  13. Perona, P. and Malik, J. (1990). Scale-space and edge detection using anistropic diffusion. IEEE Trans. Pattern Analysis and Machine Intelligence, 12.Google Scholar
  14. Pollak, I., Willsky, A., and Krim, H. (Feb, 2000) . Image segmentation and edge enhancement with stabilized inverse diffusion equations. IEEE Trans. on Image Processing. Google Scholar
  15. Saito, N. (1994). Local feature extraction and its applications using a library o f bases. PhD thesis, Yale University.Google Scholar
  16. ter Haar Romeney, B. (1994). Geometry Driven Diffusion. Dordecht: Kluwer Academic Publishers. Edited Book.Google Scholar
  17. Tewfik, S. A. (1992). Simple regularity criteria for subdivision scheme. SIAM J. Math. Anal., 23:1544–1576.MathSciNetCrossRefGoogle Scholar
  18. Vidakovic, B. (1998) . Nonlinear wavelet shrinkage with bayes rules and bayes. Journal of the American Statistical Association, 173–179., 93:173–179.MathSciNetzbMATHCrossRefGoogle Scholar
  19. Witkin, A. P. (1983). Scale space filtering. In Proc. Int. Joint Conf. on Artificial Intellingence, pages 1019–1023, Karlsruhe, Germany.Google Scholar
  20. Yuille, A. L. and Poggio, T. (1985). Scaling theorems for zero-crossings. JOSA, A(2).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Yufang Bao
    • 1
  • Hamid Krim
    • 1
  1. 1.ECE Dept.NCSURaleighUSA

Personalised recommendations