Symmetry and Locality in Image Representation

  • Roland Wilson
Part of the Computational Imaging and Vision book series (CIVI, volume 19)


Abstract This chapter describes the way in which symmetry and locality affect the choice of an image representation. After discussing these concepts and the role they play in image analysis, examples of a number of applications of the ideas to problems such as image segmentation and motion estimation are described briefly.


Motion Estimation Wavelet Transform Markov Random Field Image Representation Continuous Wavelet Transform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antoine, J-P. (1996). Symmetry-adapted wavelet analysis. Proc. IEEE I CIP- 96, 3:177–180, Lausanne.Google Scholar
  2. Antonini, M., Barlaud, M., Mathieu, P., and Daubechies, I. (1992). Image coding using wavelet transform. IEEE Transactions on Image Processing, 1:205–220.CrossRefGoogle Scholar
  3. Barnsley, M.F. (1988). Fractals Everywhere. Academic Press.zbMATHGoogle Scholar
  4. Bell, J.S. (1987). Speakable and Unspeakable in Quantum Mechanics. Cambridge UP.zbMATHGoogle Scholar
  5. Bishop, C.M. (1995). Neural Networks for Pattern Recognition. Oxford UP.Google Scholar
  6. Calway, A.D., Knutsson, H.E. and Wilson R. (1992). Multiresolution Estimation of 2-d Disparity Using a Frequency Domain Approach. Proc. BMVC-92, 227–236.Google Scholar
  7. Calway, A.D. and Wilson R. (1994). Curve Extraction in Images Using a Multiresolution Framework. CVGIP: Image Understanding, 59(3):359–366.CrossRefGoogle Scholar
  8. Kruger, S.A. and Calway, A.D. (1998). A multiresolution frequency domain method for estimating affine motion parameters. Proc. IEEE ICIP-96, 1:113–116, Lausanne.CrossRefGoogle Scholar
  9. Chen, G-H. and Wilson, R. (2001). A Multiresolution Random Field Based Model for Image Segmentation. Proc. SCIA-2001, Norway.Google Scholar
  10. Coifman, R. and Wickerhauser, M. (1992). Entropy-based algorithms for best basis selection. IEEE Transactions on Information Theory, 38:713–718.zbMATHCrossRefGoogle Scholar
  11. Daubechies, I. (1992). Ten Lectures on Wavelets. SIAM Press.zbMATHCrossRefGoogle Scholar
  12. Davenport, W.B. and Root, W.L. (1987). An Introduction to the Theory of Random Signals and Noise. IEEE Press.CrossRefGoogle Scholar
  13. Gibson, J.J. (1974). The Perception of the Visual World. Greenwood Press.Google Scholar
  14. Haralick, R.M. (1993). Computer and Robot Vision. Addison-Wesley.Google Scholar
  15. Hoffman, W.C. (1970). Higher visual perception as prolongation of the basic Lie transformation group. Mathematical Biosciences, 6:437–471.MathSciNetzbMATHCrossRefGoogle Scholar
  16. Hsu, T-I. and Wilson, R. (1998). A Two-component model of texture for analysis and synthesis. IEEE Transactions on Image Processing, 7:1466–1476.CrossRefGoogle Scholar
  17. Jacquin, A.E. (1992). Image coding based on a fractal theory of iterated contractive image transformations. IEEE Transactions on Image Processing, 1:18–30.CrossRefGoogle Scholar
  18. Jain, A.K. (1989). Fundamentals of Digital Image Processing. Academic Press.zbMATHGoogle Scholar
  19. Kindermann, R. and Snell, J.L. (1980). Markov Random Fields and their Applications. American Math. Soc. Press.zbMATHCrossRefGoogle Scholar
  20. Lenz, R. (1990). Group Theoretical Methods in Image Processing. Springer-Verlag.CrossRefGoogle Scholar
  21. Li C.T. and Wilson, R. (1998). Image Segmentation Based on a Multiresolution Bayesian Framework. Proc. IEEE ICIP-98, Chicago.Google Scholar
  22. Mardia, K.V., Kent, J.M. and Bibby, J.M. (1979). Multivariate Analysis Academic Press.zbMATHGoogle Scholar
  23. Meyer, F., Averbuch, A., and Stromberg, J.-O. (2000). Fast adaptive wavelet packet image compression. IEEE Trans. on Image Processing, pages 792–800.Google Scholar
  24. Mignotte M., Collet C., Poraz P. and Pouthely, B. (2000). Sonar image segmentation using an unsupervised hierarchical MRF model. IEEE Transactions on Image Processing, 9:1261–1231.CrossRefGoogle Scholar
  25. J.L. Mundy and A. Zisserman (Eds). Geometric Invariance in Computer Vision. MIT Press, 1992.Google Scholar
  26. A. Papoulis. The Fourier Integral and its Applications. McGraw-Hill, 1962.zbMATHGoogle Scholar
  27. Ripley, (1996). Pattern Recognition and Neural Networks. Cambridge UP.zbMATHGoogle Scholar
  28. Sapiro, G. and Tanenbaum, A. (1993). Affine invariant scale-space. International Journal of Computer Vision, 11:25–44.CrossRefGoogle Scholar
  29. Tekalp, A.M. (1995). Digital Video Processing. Prentice Hall.Google Scholar
  30. Wilson, R. and Granlund, G.H. (1984). The Uncertainty Principle in image processing. IEEE Transactions on Pattern Analysis, Machine Intelligence, 8:758–767, 1984.Google Scholar
  31. Wilson, R., Calway, A.D. and Pearson, E. R. S. (1992). A generalized wavelet transform for Fourier analysis: the multiresolution Fourier transform and its application to image and audio signal analysis. IEEE Transactions on Information Theory, 38:674–690.MathSciNetzbMATHCrossRefGoogle Scholar
  32. Wilson, R. (1996). Symmetry and locality: Uncertainty revisited. Proc. IEEE ICIP-96, 3:207–210, Lausanne.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Roland Wilson
    • 1
  1. 1.Department of Computer ScienceUniversity of WarwickCoventryUK

Personalised recommendations