Advertisement

The Double Density DWT

  • Ivan W. Selesnick
Part of the Computational Imaging and Vision book series (CIVI, volume 19)

Abstract

This chapter takes up the design of discrete wavelet transforms based on oversampled filter banks. In this case the wavelets form an overcomplete basis, or frame. In particular, we consider the design of systems that are analogous to Daubechies’ orthonormal wavelets — that is, the design of minimal length wavelet filters satisfying certain polynomial properties, but now in the oversampled case. The wavelets are constructed using maximally flat FIR filters in conjunction with extension methods for paraunitary matrices. Because there are more degrees of freedom in the design problem, the wavelets described in this chapter are much smoother than orthonormal wavelets of the same support.

The oversampled dyadic DWT considered in this chapter is based on a single scaling function and two distinct wavelets. Having more wavelets than necessary gives a closer spacing between adjacent wavelets within the same scale. Like the dual-tree DWT, the oversampled DWT presented here is redundant by a factor of 2, independent of the number of levels. In comparison, the redundancy of the undecimated DWT grows with the number of levels.

Keywords

Filter Bank Tight Frame Wavelet Frame Wavelet Filter Delay Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benedetto, J. J. and Li, S. (1998). The theory of multiresolution analysis frames and applications to filter banks. Applied and Computational Harmonic Analysis, 5(4):389–427.MathSciNetzbMATHCrossRefGoogle Scholar
  2. Benno, S. A. and Moura, J. M. F. (1998). Scaling functions robust to translations. IEEE Trans. on Signal Processing, 46(12):3269–3281.MathSciNetzbMATHCrossRefGoogle Scholar
  3. Berkner, K. and Wells, Jr., R. O. (1998). A correlation-dependent model for denoising via nonorthogonal wavelet transforms. Technical Report CML TR98–07, Computational Mathematics Laboratory, Rice Uni-versity.Google Scholar
  4. Bölcskei, H., Hlawatsch, F., and Feichtinger, H. G. (1998). Frame- the-oretic analysis of oversampled filter banks. IEEE Trans. on Signal Processing, 46 (12):3256–3268.CrossRefGoogle Scholar
  5. Burt, P. J. and Adelson, E. H. (1983). The Laplacian pyramid as a compact image code. IEEE Trans. Comm., 31(4):532–540.CrossRefGoogle Scholar
  6. Chui, C. and He, W. (2000). Compactly supported tight frames associated with refinable functions. Applied and Computational Harmonic Analysis, 8(3):293–319.MathSciNetzbMATHCrossRefGoogle Scholar
  7. Chui, C. K., Shi, X., and Stockler, J. (1998). Affine frames, quasi-affine frames, and their duals. Advances in Comp. Math, 8:1–17.MathSciNetzbMATHCrossRefGoogle Scholar
  8. Coifman, R. R. and Donoho, D. L. (1995). Translation-invariant denoising. In Antoniadis, A., editor, Wavelets and Statistics. Springer-Verlag Lecture Notes.Google Scholar
  9. Cox, D., Little, J., and O’Shea, D. (1991). Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra. Springer-Verlag.Google Scholar
  10. Cvetković, Z. and Vetterli, M. (1998). Oversampled filter banks. IEEE Trans. on Signal Processing, 46(5):1245–1255.CrossRefGoogle Scholar
  11. Daubechies, I. (1992). Ten Lectures On Wavelets. SIAM.zbMATHCrossRefGoogle Scholar
  12. Dragotti, P., Kovačević, J., and V. K Goyal (2001). Quantized oversampled filter banks with erasures. In Proc. Data Compr. Conf., Snowbird, Utah.Google Scholar
  13. Faugère, J.-C., de Saint-Martin, F. M., and Rouillier, F. (1998). Design of regular nonseparable bidimensional wavelets using Gröbner basis techniques. IEEE Trans. on Signal Processing, 46 (4):845–856.CrossRefGoogle Scholar
  14. Freeman, W. T. and Adelson, E. H. (1991). The design and use of steer-able filters. IEEE Trans. Patt. Anal. Mach. Intell., 13(9):891–906.CrossRefGoogle Scholar
  15. Goyal, V. K., Vetterli, M., and Thao, N. T. (1998). Quantized overcom-plete expansions in IRN: Analysis, synthesis and algorithms. IEEE Trans. Inform. Theory, 44(1):16–31.MathSciNetzbMATHCrossRefGoogle Scholar
  16. Han, B. (1997). On dual wavelet tight frames. Applied and Computational Harmonic Analysis, 4:380–413.MathSciNetzbMATHCrossRefGoogle Scholar
  17. Herrmann, O. (1971). On the approximation problem in nonrecursive digital filter design. IEEE Trans. on Circuit Theory, 18(3):411–413.CrossRefGoogle Scholar
  18. Kingsbury, N. G. (1999a). Inage processing with complex wavelets. Phil. Trans. Royal Society London A.Google Scholar
  19. Kingsbury, N. G. (1999b). Shift invariant properties of the dual-tree complex wavelet transform. In Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP), Phoenix.Google Scholar
  20. Lang, M., Guo, H., Odegard, J. E., Burrus, C. S., and Wells, Jr., R. O. (1996). Noise reduction using an undecimated discrete wavelet transform. IEEE Signal Processing Letters, 3(1):10–12.CrossRefGoogle Scholar
  21. Lebrun, J. and Vetterli, M. (2001). High order balanced multiwavelets: Theory, factorization and design. IEEE Trans. on Signal Processing. To appear.Google Scholar
  22. Munch, N. J. (1992). Noise reduction in tight Weyl-Heisenberg frames. IEEE Trans. Inform. Theory, 38(2):608–616.MathSciNetzbMATHCrossRefGoogle Scholar
  23. Papadakis, M. (2000). Generalized frame multiresolution analysis of abstract Hilbert spaces and its applications. In Wavelet Applications in Signal and Image Processing VIII (Proc. SPIE 4119), San Diego.Google Scholar
  24. Park, H., Kalker, T., and Vetterli, M. (1997). Groebner bases and multidimensional FIR multirate systems. Journal of Multidimensional Systems and Signal Processing, 8:11–30.zbMATHCrossRefGoogle Scholar
  25. Petukhov, A. (2000a). Explicit construction of framelets. Research report 00:03, Industrial Mathematics Institute, University of South Carolina. http://www.math.sc Google Scholar
  26. Petukhov, A. (2000b). Symmetric framelets. Research report 00:15, Industrial Mathematics Institute, University of South Carolina. http://www.math.sc.edu/~imip/.Google Scholar
  27. Ron, A. and Shen, Z. (1997). Affine systems in L2(IRd): the analysis of the analysis operator. Journal Funct. Anal., 148:408–447.MathSciNetzbMATHCrossRefGoogle Scholar
  28. Ron, A. and Shen, Z. (1998). Construction of compactly supported affine frames in L2 (IRd). In Lau, K. S., editor, Advances in Wavelets. Springer Verlag.Google Scholar
  29. Selesnick, I. W. (1999). Interpolating multiwavelet bases and the sampling theorem. IEEE Trans. on Signal Processing, 47(6):1615–1621.MathSciNetzbMATHCrossRefGoogle Scholar
  30. Selesnick, I. W. (2001). Smooth wavelet tight frames with zero moments. Applied and Computational Harmonic Analysis, 10(2):163–181.MathSciNetzbMATHCrossRefGoogle Scholar
  31. Selesnick, I. W. and Burrus, C. S. (1998). Maximally fiat low-pass FIR filters with reduced delay. IEEE Trans. on Circuits and Systems II, 45 (1):53–68.CrossRefGoogle Scholar
  32. Selesnick, I. W. and Sendur, L. (2000). Smooth wavelet tight frames with denoising applications. In Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP). Google Scholar
  33. Simoncelli, E. P. and Freeman, W. T. (1995). The steerable pyramid: A flexible architecture for multi-scale derivative computation. In Proc. IEEE Int. Conf. Image Processing, Washington, DC.Google Scholar
  34. Simoncelli, E. P., Freeman, W. T., Adelson, E. H., and Heeger, D. J. (1992). Shiftable multi-scale transforms. IEEE Trans. Inform. Theory, 38(2):587–607.MathSciNetCrossRefGoogle Scholar
  35. Steffen, P., Heller, P., Gopinath, R. A., and Burrus, C. S. (1993). Theory of regular M-band wavelet bases. IEEE Trans. on Signal Processing, 41(12):3497–3511.zbMATHCrossRefGoogle Scholar
  36. Vaidyanathan, P. P. (1993). Multirate Systems and Filter Banks. Prentice Hall.zbMATHGoogle Scholar
  37. Vaidyanathan, P. P., Nguyen, T. Q., Doğanata, Z., and Sararnäki, T. (1989). Improved technique for design of perfect reconstruction FIR QMF banks with lossless polyphase matrices. IEEE Trans. on Acoust., Speech, Signal Proc., 37(7):1042–1056.CrossRefGoogle Scholar
  38. Welland, G. and Lundberg, M. (1993). Construction of p-wavelets. Constructive Approximation, 9:347–370.MathSciNetzbMATHCrossRefGoogle Scholar
  39. Xiong, Z., Orchard, M. T., and Zhang, Y.-Q. (1997). A deblocking algorithm for JPEG compressed images using overcomplete wavelet representations. IEEE Trans. Circuits Syst. Video Technol., 7(2):433–437.CrossRefGoogle Scholar
  40. Zou, H. and Tewfik, A. H. (1992). Discrete orthogonal m-band wavelet decompositions. In Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP), San Francisco.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Ivan W. Selesnick
    • 1
  1. 1.Polytechnic UniversityBrooklynUSA

Personalised recommendations