An Application of the DWT in Seismic Data Analysis

  • P. J. Oonincx
  • R. Sleeman
  • T. van Eck
Part of the Computational Imaging and Vision book series (CIVI, volume 19)


Seismicc signals consist of several typically short energy bursts, called phases, exhibiting several patterns in terms of dominant frequency, amplitude and polarisation. We present a fast algorithm to detect the so-called S-phase in a three-component seismic signal. This new approach combines traditional S-phase detection methods and the discrete wavelet transform.


Arrival Time Discrete Wavelet Transform Window Length Seismic Signal Wavelet Filter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aki, K. and Richards, P. G. (1980). Quantitative seismology, Freeman and Company, San Francisco.Google Scholar
  2. Anant, K. and Dowla, F. ( 1997) . Wavelet transform methods for phase identification in three-component seismograms, Bull. Seism. Soc. Am., 87. 1598–1612.MathSciNetGoogle Scholar
  3. Baer M. and Kradolfer, U. (1987). An automatic phase picker for local and teleseismic events. Bull. Seism. Soc. Am., 77, 1437–1445, 1987.Google Scholar
  4. Cichowicz, A. (1993). An automatic S-phase picker, Bull. Seism. Soc. Am., 83, 180–189.Google Scholar
  5. Cohen A. and Ryan, R. (1995). Wavelets and multiscale signal proces sing, Chapman & Hall, London.Google Scholar
  6. Daubechies, I. (1992). Ten lectures on wavelets, SIAM, Philadelphia.zbMATHCrossRefGoogle Scholar
  7. Donoho, D.L. (1992). De-noising by soft-thresholding, Tech. Rept. Dept. of Statistics, Stanford University.Google Scholar
  8. van Eijndhoven, S.J.L. and Oonincx, P.J. (1999). Multiresolution Analysis in Hilbert Spaces, Indagationes Mathematicae, 10, 369–382.MathSciNetzbMATHCrossRefGoogle Scholar
  9. Jepsen, D.C. and Kennett, B.L.N. (1990). Three-component analysis of regional seismograms, Bull. Seism. Soc. Am., 80, 2032–2052.Google Scholar
  10. Mallat, S. (1989) . A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pat. Anal. Mach. Intell., 11, 674–693.zbMATHCrossRefGoogle Scholar
  11. Olno, G. and Lo Presti, L. (1994). in: Wavelets: Theory, Algorithms and Applications, eds. C. Chui, L. Montefusco and L. Puccio, Academic Press, London, 561–572.Google Scholar
  12. Oonincx, P.J. (1998). Automatic phase detection in seismic data using the discrete wavelet transform, CWI-Report PNA-R9811.Google Scholar
  13. Papoulis, A. (1997). Signal Analysis, McGraw-Hill, New York.Google Scholar
  14. Samson, J. and Olson, J. (1980). Some comments on the descriptions of the polarization states of waves, Geophys. J. R. astr. Soc., 61, 115–129.zbMATHCrossRefGoogle Scholar
  15. Sleeman, R. and T. van Eck, T. (1999). Robust automatic P-phase picking: An on-line implementation in the analysis of broad-band seismogram recordings, Phys. Earth Plan. Int., 113, 265–275.CrossRefGoogle Scholar
  16. Young, R.M. (1980).An introduction to nonharmonic Fourier series, Academic Press, New york.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • P. J. Oonincx
    • 1
  • R. Sleeman
    • 2
  • T. van Eck
    • 2
  1. 1.CWIAmsterdamThe Netherlands
  2. 2.Dept. of SeismologyKNMIDe BiltThe Netherlands

Personalised recommendations