Skip to main content

Wavelets for Computer-Aided Diagnosis in Radiographic Images

  • Chapter
Wavelets in Signal and Image Analysis

Part of the book series: Computational Imaging and Vision ((CIVI,volume 19))

  • 451 Accesses

Abstract

Computer-vision techniques based on wavelets are presented with applications to computer-aided diagnosis (CAD) in medical images. CAD is a method for assisting radiologists’ interpretation of medical images. CAD schemes act as a second reader and alert radiologists to suspicious lesions. Development of CAD schemes is an active area of research, motivated by the fact that radiologists tend to misdiagnose cancerous lesions in medical images. In the past several years, we have been extensively developing wavelet-based techniques for CAD schemes. Development of these techniques has led to a new CAD scheme and has yielded significant improvements in the performance of the existing CAD schemes. This chapter describes two wavelet-based, low-level computer vision techniques: simultaneous segmentation and registration, and matching pursuit with optimally weighted wavelet packets. We present their application to the computer-aided detection of lung nodules in chest radiographs and microcalcifications in mammograms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • American Cancer Society (2000). Cancer facts and figures. American Cancer Society.

    Google Scholar 

  • Anastasio, M. A., Yoshida, H., Nagel, R., Nishikawa, R. M., and Doi, K. (1998). A genetic algorithm-based method for optimizing the performance of a computer-aided diagnosis scheme for detection of clustered microcalcifications in mammograms. Medical Physics, 25:1613–1620.

    Article  Google Scholar 

  • Bird, R. G., Wallace, T. W., and Yankaskas, B. C. (1992 Analysis of cancers missed at screening mammography. Radiology, 184:613–617.

    Google Scholar 

  • Burhenne, H., Burhenne, L., Goldberg, F., Hislop, T., Worth, A. J., Rebbeck, P. M., and Kan, L. (1994). Interval breast cancers in the screening mammography program of british columbia: Analysis and classification. AJR, 162:1067–1071.

    Google Scholar 

  • Carreira, M. J., Cabello, D., Penedo, M. G., and Pardo, J. M. (1996). Computer-aided lung nodule detection in chest radiography. Lecture Notes in Computer Science, 1024:331–338.

    Article  Google Scholar 

  • Casella, G. and Berger, R. L. (1990). Statistical Inference. Duxbury Press, Belmont, California.

    MATH  Google Scholar 

  • Chan, H.-P., Doi, K. S. G., Vyborny, C. J., MacMahon, H., and Jokich, P. M. (1987) . Image feature analysis and computer-aided diagnosis in digital radiography. 1. Automated detection of microcalcifications in mammography. Med Phys, 14:538–548.

    Article  Google Scholar 

  • Coifman, R. R. and Wickerhauser, M. (1994). Adapted waveform analysis as a tool for modelling, feature extraction, and denoising. Optical Engineering, 33:2170–2174.

    Article  Google Scholar 

  • Coifman, R. R. and Wickerhauser, M. V. (1992). Entropy-based algorithms for best basis selection. IEEE Trans. Information Theory, 38:1713–1716.

    Article  Google Scholar 

  • Daubechies, I. (1992). Ten Lectures on Wavelets. SIAM, Philadelphia, PA

    Book  MATH  Google Scholar 

  • Difazio, M. C., MacMahon, H., Xu, X.-W., Tsai, P., Shiraishi, J., Armato, S. G., and Doi, K. (1997). Digital chest radiography: Effect of temporal subtraction images on detection accuracy. Radiology, 202:447–452.

    Google Scholar 

  • Doi, K., MacMahon, H., Giger, M., and Hoffmann, K., editors (1999). Compuer-aided diagnosis in medical imaging. Elsevier, Amsterdam.

    Google Scholar 

  • Efron, E., editor (1982). The jackknife, the bootstrap, and other resampling plans. Society for Industrial and Applied Mathematics, Philadelphia.

    Google Scholar 

  • Forrest, J. and Friedman, P. (1981). Radiologic errors in patients with lung cancer. West J Med, 134:485–490.

    Google Scholar 

  • Giger, M., Huo, Z., Kupinski, M. A., and Vyborny, C. J. (2000). Computeraided diagnosis in mammography. In Fitzpatrick, J. M. and Sonka, M., editors, Handbook of Medical Imaging, volume 2, pages 915–1004. The International Society for Optical Engineering.

    Google Scholar 

  • Giger, M. and MacMahon, H. (1996). Image processing and computeraided diagnosis. In Greenes, R. A. and Bauman, R., editors, Radiologic Clinics of North America, pages 565–596. Saunders Publishing Co.

    Google Scholar 

  • Heidbreder, G. R., editor (1996). Maximum Entropy and Bayesian Methods. Kluwer Academic Publishers.

    MATH  Google Scholar 

  • Jiang, Y., Nishikawa, R. M., Wolverton, D. E., Metz, C. E., Giger, M. L., Schmidt, R. A., Vyborny, C. J., and Doi, K. (1996). Malignant and benign clustered microcalcifications: Automated feature analysis and classification. Radiology, 198:671–678.

    Google Scholar 

  • Kano, A., Doi, K., MacMahon, H., Hassell, D. D., and Giger, M. L. (1994). Digital image subtraction of temporally sequential chest images for detection of interval changes. Med Phys, 21:453–461.

    Article  Google Scholar 

  • Keserci, B. and Yoshida, H. (2000). Bayesian wavelet snake model for computer-aided diagnosis of lung nodules in chest radiographs. Medical Image Analysis (accepted).

    Google Scholar 

  • Kundel, H. L. and Nodine, C. F. (1980). Interpreting chest radiographs without visual search. Radiology, 116:527–532.

    Google Scholar 

  • Laine, A., Schuler, S., Fan, J., and Huda, W. (1994). Mammographic feature enhancement by multiscale analysis. IEEE Transactions on Medical Imaging, 13:1–28.

    Article  Google Scholar 

  • Little, J., Hill, D., and Hawkes, D. (1996). Deformations incorporating rigid structures. In Workshop on Mathematical Methods in Biomedical Image Analysis, Proc IEEE, pages 104–113. IEEE.

    Chapter  Google Scholar 

  • Lo, S., Freedman, M., Lin, J., and Mun, S. (1993). Automatic lung nodule detection using profile matching and back-propagation neural network techniques. Journal of Digital Imaging, 6:48–54.

    Article  Google Scholar 

  • Mallat, S. G. and Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries. IEEE Trans. on Signal Processing, 41:3397–3415.

    Article  MATH  Google Scholar 

  • Matsumoto, T., Yoshimura, H., Doi, K., Giger, M. L., Kano, A., MacMahon, H., Abe, K., and Montner, S. (1992). Image feature analysis of false positive diagnoses produced by automated detection of lung nodules. Invest Radiol, 27:587–597.

    Article  Google Scholar 

  • Maurer, C. R. and Fitzpatrick, J. M. (1993). A review of medical image registration. In Maciunas, R. J., editor, Interactive Image- Guided Neurosurgery, pages 17–44, Park Ridge, IL. American Association of Neurological Surgeons.

    Google Scholar 

  • Metz, C. (2000) . Fundamental roc analysis. In Fitzpatrick, J. M. and Sonka, M., editors, Handbook of Medical Imaging, volume 1, pages 751–770. The International Society for Optical Engineering.

    Google Scholar 

  • Metz, C. E. (1989). Some practical issues of experimental design and data analysis in radiological ROC studies. Invest Radiol, 24:234–245.

    Article  Google Scholar 

  • Metz, C. E., Herman, B. A., and Shen, J.-H. (1998). Maximum-likelihood estimation of ROC curves from continuously-distributed data. Statist Med, 17:1033–1053.

    Article  Google Scholar 

  • Netsch, T. (1996). Detection of microcalcification clusters in digital mammograms: A scale-space approach. In Doi, K., Giger, M. L., Nishikawa, R. M., and Schmidt, R. A., editors, Digital Mammography ’96, pages 301–306. Elsevier Science, Amsterdam.

    Google Scholar 

  • Press, W. H., Teukolsky, S. A., Vettering, W. T., and Flannery, B. P., editors (1992). Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. Cambridge University Press.

    Google Scholar 

  • Schmidt, R. A. and Nishikawa, R. M. (1994). Digital screening mammography. Principles Practice of Oncology, 8:1–16.

    Google Scholar 

  • Shen, L., Rangayyan, R. M., and Desautels, J. E. L. (1994). Application of shape analysis to mammographic calcifications. IEEE Transactions on Medical Imaging, 13:263–274.

    Article  Google Scholar 

  • Sickels, E. A. (1986). Mamnographic features of 300 consecutive noninvasive breast cancers. Am. J. Radiol., 146:661–663.

    Google Scholar 

  • Sonka, M., Hlavac, V., and Boyle, R. (1998). Image processing, analysis and machine vision, 2nd Ed. Chapman S Hall Computing.

    Google Scholar 

  • Strickland, R. N. and Hahn, H. I. (1996). Wavelet transform for detecting microcalcifications in mammograms. IEEE Transactions on Medical Imaging, 15:218–229.

    Article  Google Scholar 

  • Strickland, R. and Hahn, H. (1997). Wavelet transform methods for object detection and recovery. IEEE Transactions on Image Processing, 6:724–735.

    Article  Google Scholar 

  • Thevenaz, P. and Unser, M. (1998). A pyramid approach to subpixel registration based on intensity. IEEE Transactions on Image Processing, 7:27–41.

    Article  Google Scholar 

  • Wang, T. C. and Karayiannis, N. B. (1998). Detection of microcalcifications in digital mammogram using wavelets. IEEE Transactions on Medical Imaging, 17:498–509.

    Article  Google Scholar 

  • Wickerhauser, M. (1994). Adapted Wavelet Analysis from Theory and Software. A K Peters, Wellesley, Massachusetts.

    Google Scholar 

  • Xu, X. and Doi, K. (1996). Image feature analysis for computer-aided diagnosis: Detection of right and left hemidiaphragm edges and deliniation of lung field in chest radiographs. Med Phys, 23:1613–1624.

    Article  Google Scholar 

  • Yoshida, H. (1998a). Matching pursuit with optimally weighted wavelet packets for extraction of microcalcifications in mammograms. Applied Signal Processing, 5:127–141.

    Article  Google Scholar 

  • Yoshida, H. (1998b). Removal of normal anatomic structures in radiographs using wavelet-based non-linear variational method for image matching. Proc SPIE, 3458:174–181.

    Article  Google Scholar 

  • Yoshida, H. (1999). Multiresolution non-rigid image registration method and its application to removal of normal anatomic structures in chest radiographs. Proc IEEE International Conference on Image Processing, ICIP99:27AP4.11.

    Google Scholar 

  • Yoshida, H. (2001). Local contralateral subtraction based on simultaneous segmentation and registration method for computerized detection of pulmonary nodules. Proc SPIE (to appear).

    Google Scholar 

  • Yoshida, H. and Amit, Y. (2000). Computer-aided diagnosis in chest radiographs: Reduction of false positives by removal of normal anatomic structures based on symmetry between left and right lung regions. Medical Physics (accepted).

    Google Scholar 

  • Yoshida, H. and Doi, K. (2000). Computerized detection of pulmonary nodules in chest radiographs: Reduction of false positives based on bilateral symmetry of lungs. Proc SPIE, 3979:97–102.

    Article  Google Scholar 

  • Yoshida, H., Doi, K., and MacMahon, H. (2000). Computerized detection of pulmonary nodules in chest radiographs: Reduction of false positives based on radiologists’ visual analysis strategy. Proc CARSComputer Assisted Radiology and Surgery, pages 809–813.

    Google Scholar 

  • Yoshida, H., Doi, K., and Nishikawa, R. M. (1994). Automated detection of clustered microcalcifications in digital mammograms using wavelet transform techniques. Proc SPIE, 2167:868–886.

    Article  Google Scholar 

  • Yoshida, H., Doi, K., and Nishikawa, R. M. (1999a). Computer-aided diagnosis in sonography, chest radiography, and mammography based on wavelet transforms. Proc International Meeting on Nuclear Energy in Medicine and Other Peaceful Applications, pages 158–170.

    Google Scholar 

  • Yoshida, H., Doi, K., Nishikawa, R. M., and Giger, M. L. (1995). Optimizing wavelet transform based on supervised learning for detection of microcalcifications in digital mammograms. Proc. International Conference on Image Processing (ICIP) ’95, ICIP95:152–155.

    Article  Google Scholar 

  • Yoshida, H., Doi, K., Nishikawa, R. M., and Giger, M. L. (1996a). Computer-aided diagnosis in mammography: Detection of clustered microcalcifications based on multiscale edge representation. Proc CAR Computer Assisted Radiology, pages 390–395.

    Google Scholar 

  • Yoshida, H., Doi, K., Nishikawa, R. M., and Giger, M. L. (1996b). True/false signal separation by wavelet packets for detection of microcalcifications in mammograms. Proc SPIE, 2825:805–811.

    Article  Google Scholar 

  • Yoshida, H., Doi, K., Nishikawa, R. M., Giger, M. L., and Schmidt, R. A. (1996c). An improved computer-assisted diagnosis schene using wavelet transform for detection of clustered microcalcifications in digital mammograms. Academic Radioloqy, 3:621–627.

    Article  Google Scholar 

  • Yoshida, H., Katsuragawa, S., Amit, Y., and Doi, K. (1999b). Waveletbased deformable contour and its application to detection of pulmonary nodules on chest radiographs. In Ritter, G. X., editor, Mathematical Imaging and Vision, volume 8. The International Society for Optical Engineering.

    Google Scholar 

  • Yoshida, H. and Keserci, B. (2000). Bayesian wavelet snake model for computer-aided diagnosis of lung nodules in chest radiographs. Journal of Integrated Computer-Aided Engineering (Special issue on industrial applications of the wavelet transforms), 7:253–269.

    Google Scholar 

  • Yoshida, H., Nishikawa, R. M., Giger, M. L., and Doi, K. (1996d). Optimally weighted wavelet packet transform for detection of clustered microcalcifications in digital mammograms. Digital Mammography ’96, pages 317–322.

    Google Scholar 

  • Zhang, W., Doi, K., Giger, M. L., Nishikawa, R. M., and Schmidt, R. A. (1996). An improved shift-invariant artificial neural network for computerized detection of clustered microcalcifications in digital mammograms. Med Phys, 23:595–601.

    Article  Google Scholar 

  • Zhang, W., Yoshida, H., Nishikawa, R. M., and Doi, K. (1998). Optimally weighted wavelet transform based on supervised training for detection of microcalcifications in digital mammograms. Medical Physics, 25:949–956.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yoshida, H. (2001). Wavelets for Computer-Aided Diagnosis in Radiographic Images. In: Petrosian, A.A., Meyer, F.G. (eds) Wavelets in Signal and Image Analysis. Computational Imaging and Vision, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9715-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9715-9_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5838-6

  • Online ISBN: 978-94-015-9715-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics