Advertisement

Image Compression Through Level Lines and Wavelet Packets

  • Jacques Froment
Part of the Computational Imaging and Vision book series (CIVI, volume 19)

Abstract

We present a structured image compression scheme based on a u = v + w model, where the original image u is decomposed between a sketch v and a residue w. The sketch contains all the meaningful edge curves, and the geometry of these edges is precisely detected and coded using level lines. The residue w = u - v contains all the microtextures, and it is compressed by means of a wavelet packet representation. By splitting the information contained in natural images between sketch and microtextures, we can use the most adapted representation on each of these structures. Edges are not deteriorated by ringing artefacts on the contrary of what could be observed with standard wavelet or wavelet packet compression schemes.

Keywords

Image Compression Wavelet Packet Level Line Seed Image Compression Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez, L., Gousseau, Y., and Morel, J.-M. (1999). Scales in natural images and a consequence on their bounded variation norm. In Scale Space Thcories in Computer Vision, pages 247–258. Lecture Notes in Computer Science 1682. Proc. of Sec. I nt. Conf. Sc ale-Space’ 99.CrossRefGoogle Scholar
  2. Ambrosio, L., Caselles, V., Masnou, S., and Morel, J.-M. (1999). Connected components of sets of finite perimeter and applications to image processing. Preprint.Google Scholar
  3. Aronsson, G.(1967). Extension of functions satisfying lipschitz conditions. Ark. Math., 6:551–561.MathSciNetzbMATHCrossRefGoogle Scholar
  4. Candès, E. and Donoho, D. (1999). Ridgelets: a key to higher-dimensional intermittency ? Phil. Trans. R. Soc. Lond. A., pages 2495–2509.Google Scholar
  5. Cao, F. (1998). Absolutely minimizing lipschitz extension with discontinuous boundary data. Note aux C.R. Acad. Sci. Paris, t.327(I):563–568.zbMATHGoogle Scholar
  6. Carlsson, S. (1988). Sketch based coding of grey level images. Signal Processing North-Holland, 15(1):57–83.CrossRefGoogle Scholar
  7. Casas, J. (1996). Morphological interpolation for image coding. In Berger, M., Deriche, R., Herlin, I., J. Jaffré, and Morel, J.-M., editors, 12th Int. Conf. on Analysis and Optimization of Systems. Images, Wavelets and PDEs. Springer.Google Scholar
  8. Caselles, V., Coll, B., and Morel, J.-M. (1996). A kanizsa programme. In Progress in Nonlinear Differential Equs. and their Applications, pages 35–55.Google Scholar
  9. Caselles, V., Coll, B., and Morel, J.-M. (1999). Topographic maps and local contrast changes in natural images. Int. J. Comp. Vision, 33 (1) :5–27.MathSciNetCrossRefGoogle Scholar
  10. Caselles, V., Morel, J.-M., and Sbert, C. (1998). An axiomatic approach to image interpolation. IEEE Trans. on Imaqe Proc., 7(3):376–386.MathSciNetzbMATHCrossRefGoogle Scholar
  11. Cohen, A., Daubechies, I., and Feauveau, J.-C. (1992). Biorthogonal bases of compactly supported wavelets. Commun. in Pure and Appl. Math., 45(5).Google Scholar
  12. Coifman, R. and Meyer, Y. (1992). Size properties of wavelet packets. In et al., B. R., editor, Wavelets and their Applications, pages 125–150. Jones and Bartlett.Google Scholar
  13. Coifman, R. and Wickerhauser, M. (1992). Entropy-based algorithms for best basis selection. IEEE Trans. on Info. Theory, 38(2):713–718.zbMATHCrossRefGoogle Scholar
  14. Crandall, M., Ishii, H., and Lions, P.-L. (1992). User’s guide to viscosity solution of second order partial differential equations. Bull. Amer. Math. Soc, 27:1–67.MathSciNetzbMATHCrossRefGoogle Scholar
  15. D’Alès, J.-P., Froment, J., and Morel, J.-M. (1999) . Reconstruction visuelle et généricité. Intellectica, 1(8) :11–35.Google Scholar
  16. Do, M. N. and Vetterli, M. (2000). Orthonormal finite ridgelet transform for image compression. In Proc. of I CIP’2000, volume 2, pages 367–370.Google Scholar
  17. Donolio, D. (1997). Wedlets: nearly-minimax estimation of edges. Tech. Rep. no 515, Statistics Dep., Stanford Univ.Google Scholar
  18. Froment, J. (1999a). A compact and multiscale image model based on levels sets. In Nielsen, M., Johansen, P., Olsen, O. F., and Weickert, J., editors, Lecture Notes in Computer Science, number 1682, pages 152–163. Springer. Proc. Sec. Int. Conf. Scale-Space’99.Google Scholar
  19. Froment, J. (1999b). A functional analysis model for natural images permitting structured compression. ESAIM:COCV Control, Opt. and Cal. of Var., 4:473–495.MathSciNetzbMATHCrossRefGoogle Scholar
  20. Froment, J. (2000). Perceptible level lines and isoperimetric ratio. In IEEE 7th Int. Conf. on Image Proc., volume 2, pages 112–115.Google Scholar
  21. Froment, J. and Mallat, S. (1992). Second generation compact image coding with wavelets. In Chui, C., editor, Wavelets - A Tutorial in Theory and Applications, pages 655–678. Academic Press.Google Scholar
  22. Froment, J. and Moisan, L. (2000). Megawave2 v.2.00. A free and opensource Unix image processing software for reproducible research, available at http://www.cmla.ens-cachan.fr.Google Scholar
  23. Gorrnish, M., Lee, D., and Marcellin, M. (2000). Jpeg 2000: overview, architecture and applications. In Proc. of ICIP’2000, volume 2, pages 29–32.Google Scholar
  24. Kanisza, G. (1980). Grammatica del Vedere. Il Mulino, Bologna.Google Scholar
  25. Landau, H. and Pollak, H. (1962). Prolate spheroidal wave functions, fourier analysis and uncertainty (iii) : the dimension of the space of essentially time and bandlimited signals. Bell System Technical Journal, 41:1295–1336.MathSciNetzbMATHGoogle Scholar
  26. Mallat, S. (1997). A wavelet tour of signal processing. Academic Press.Google Scholar
  27. Mallat, S. and Zhong, S. (1992). Characterization of signals from multiscale edges. IEEE Trans. Pattern Recog. and Machine Intell., 14(7):710–732.CrossRefGoogle Scholar
  28. Marr, D. (1982). Vision. W.H.Freeman and Co.Google Scholar
  29. Mertins, A. (1999). Image compression via edge-based wavelet transform. Opt. Eng., 38(6):991–1000.CrossRefGoogle Scholar
  30. Meyer, F. (1999). Wavelet packet coder and decoder. Binaries available for Linux on Pentium processors at http://ece-www.colorado.edu/fineyer/distrib.html.Google Scholar
  31. Meyer, F., Averbuch, A., and Stromberg, J.-O. (2000). Fast adaptive wavelet packet image compression. IEEE Trans. on Image Proc., 9(5).Google Scholar
  32. Meyer, F. and Coifnan, R. (1997). Brushlets: a tool for directional image analysis and image compression. Applied and Comput. Harmonic Ana., pages 147–187.Google Scholar
  33. Monasse, P. and Guichard, F. (1999). Scale-space from a level lines tree. In Scale-Space Theories in Computer Vision, pages 175–186. Lecture Notes in Computer Science 1682. Proc. of Sec. Int. Conf. Scale-Space’99.CrossRefGoogle Scholar
  34. Morel, J.-M. and Solimini, S. (1995). Variational Methods in Image Segmentation. Birkhauser.CrossRefGoogle Scholar
  35. Pennec, E. L. and Mallat, S. (2000). Image compression with geometrical wavelets. In Proc. of ICIP’2000, volume 1, pages 661–664.Google Scholar
  36. Shapiro, J. (1993). Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. on Signal Processing, 41(12) :3445–3462.zbMATHCrossRefGoogle Scholar
  37. Wallace, G. (1991). Jpeg. Communications of the ACM, 34(4):31–44.Google Scholar
  38. Wertheimer, M. (1923). Untersuchungen zur lehre der gestalt. Psychologische Forschung. IV:301–350.CrossRefGoogle Scholar
  39. Witten, I., Neal, R., and Cleary, J. (1987). Arithmetic coding for data compression. Communications of the ACM, 30(6):520–540.CrossRefGoogle Scholar
  40. Xiong, Z., Ramchandran, K., and Orchard, M. (1998). Wavelet packets coding using space-frequency quantization. IEEE Trans. on Image Proc., 7(6) :892–898.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Jacques Froment
    • 1
    • 2
  1. 1.UFR de Mathématiques et InformatiqueUniversité Paris 5 R. DescartesParis cedex 06France
  2. 2.École Normale Supérieure de CachanCMLACachan cedexFrance

Personalised recommendations