Skip to main content

Part of the book series: Computational Imaging and Vision ((CIVI,volume 19))

  • 451 Accesses

Abstract

The intention of this paper is to provide an elementary introduction to the subject of discrete-time wavelets. It defines the discrete-time wavelets and reviews their properties in a systematic and consistent way. Different kinds of orthogonality between the wavelets are addressed and the corresponding sufficient and necessary conditions are derived. It is shown when discrete-time wavelets can be samples of continuous-time wavelets. The conditions for shift-invariance of discrete-time wavelet representations are given in detail. The appearance of two biorthogonal representation sets of discrete-time wavelets from the binary subband decomposition/reconstruction of signals is pointed out. When the number of different representation scales is finite, it is shown that in order to obtain the orthogonality between wavelets, the known requirement for wavelet generating filter can be relaxed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AFIT (1991). Applications of Wavelets to Signal Processing, Ohio. Wright-Patterson Air Force Base. Proc. of the AFIT Science &; Research Center Symposium.

    Google Scholar 

  • Auslander, L. and Gertner, I. (1990). Wide-band ambiguity function and a — x b group. In Auslander, L., Kailath, T., and Mitter, S., editors, Signal Processing, Part I: Signal Processing Theory. IMA vol. 22, Springer-Verlag, New York.

    Google Scholar 

  • Beylkin, G., Coifman, R., and Rokhlin, V. (1991). Fast wavelet transforms and numerical algorithms I. Comm. Pure Appl. Math., XLIV: 141–183.

    Google Scholar 

  • Beylkin, G., Coifman, R., and Rokhlin, V. (1992). Wavelets in numerical analysis. In Ruskai, M. B. et al., editors, Wavelets and Their Applications, pages 181–211. Jones and Bartlett Publishers.

    Google Scholar 

  • Combes, J. M., Grossmann, A., and Tchamitchian, P., editors (1989). Wavelets: Time- Frequency Methods and Phase Space, New York. Springer-Verlag. Proceedings of the International Conference, Marseille, France, December 1987.

    MATH  Google Scholar 

  • Crochiere, R. E. and Rabiner, L. R. (1983). Multirate Digital Signal Processing. Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Crowe, J. A., Gibson, N. M., Woolfson, M. S., and Somekh, M. G. (1992). Wavelet transform as a potential tool for ECG analysis and compression. J. Biomed. Eng., 14:268–272.

    Article  Google Scholar 

  • Daubechies, I. (1988). Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, XLI:909— 996.

    Google Scholar 

  • Daubechies, I. (1990). The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inform. Theory, 36(5):961–1005.

    Article  MathSciNet  MATH  Google Scholar 

  • Daubechies, I. (1992). Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics, no. 61. Society for Industrial and Applied Mathematics, Philadelphia,PA.

    Book  Google Scholar 

  • DeVore, R. A., Jawerth, B., and Lucier, B. J. (1992). Image compression through wavelet transform coding. IEEE Trans. Inform. Theory, 38 (2): 719–746. Part II: Special Issue on Wavelet Transform and Multiresolution Signal Analysis.

    Article  MathSciNet  MATH  Google Scholar 

  • Edwards, R. E. (1979). Fourier Series: A Modern Introduction, volume 1. Springer-Verlag, New York, second edition.

    Book  MATH  Google Scholar 

  • Evangelista, G. (1989). Orthogonal wavelet transforms and filter banks. In Proc. Twenty-Third Asilomar Conf. Circuits, Syst., Computers, volume 1, pages 489–492, Pacific Grove.

    Google Scholar 

  • Evangelista, G. and Barnes, C. W. (1990). Discrete-time wavelet transforms and their generalizations. In Proc. ISCAS-90, pages 2026–2029, New Orleans.

    Google Scholar 

  • Flandrin, P., Magand, F., and Zakharia, M. (1990). Generalized target description and wavelet decomposition. IEEE Trans. Acoust., Speech, Signal Processing, 38(2):350–352.

    Article  MathSciNet  Google Scholar 

  • Frisch, M. and Messer, H. (1991). Detection of a transient signal of unknown scaling and arrival time using the discrete wavelet transform. In Proc. I CA SSP- 91, pages 1313–1316, Toronto.

    Google Scholar 

  • Grossmann, A. and Morlet, J. (1984). Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal., 15(4):723–736.

    Article  MathSciNet  MATH  Google Scholar 

  • Herley, C. and Vetterli, M. (1991). Linear phase wavelets: Theory and design. In Proc. I CA SSP- 91, vol. 3, pages 2017–2020, Toronto.

    Google Scholar 

  • Herley, C. and Vetterli, M. (1993). Wavelets and recursive filter banks. IEEE Trans. Signal Processing, 41(8):2536–2556.

    Article  MATH  Google Scholar 

  • Kadambe, S. and Boudreaux-Bartels, G. F. (1991). A comparison of wavelet functions for pitch detection of speech signals. In Proc. ICASSP-91, volume 1, pages 449–452, Toronto.

    Google Scholar 

  • Knowles, G. (1990). VLSI architecture for the discrete wavelet transform. Electronic Letters, 26(15):1184–1185.

    Article  Google Scholar 

  • Kolata, G. (1991). New technique stores images more efficiently. The New York Times.

    Google Scholar 

  • Lemarié, P. G. (1990) Analyse multi-échelles et ondelettes a support compact. In Lemarié, P. G., editor, Les Ondelettes en 1989, pages 26–38. Springer-Verlag, Berlin Heidelberg. Lecture Notes in Mathematics, vol. 1438.

    Chapter  Google Scholar 

  • Lewis, A. S. and Knowles, G. (1990). Video compression using 3D wavelet transforms. Electronic Letters, 26(6):396–398.

    Article  Google Scholar 

  • Maass, P. (1992). Wideband approximation and wavelet transform. In Grünbaum, F. A., Bernfeld, M., and Blahut, R. E., editors, Radar and Sonar: Part II, pages 83–88. Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Mallat, S. G. (1989a). Multifrequency channel decompositions of images and wavelet models. Trans. on Acoust., Speech, and Signal Processing, 37(12):2091–2110.

    Article  Google Scholar 

  • Mallat, S. G. (1989b). Multiresolution approximations and wavelet orthonormal bases of L2(R). Trans. of AMS, 315(1):69–87.

    MathSciNet  MATH  Google Scholar 

  • Mallat, S. G. (1989c). A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell., 11(7):674–693.

    Article  MATH  Google Scholar 

  • Meyer, Y. (1990a). Ondelettes et Opérateurs I: Ondelettes. Hermann, Paris.

    Google Scholar 

  • Meyer, Y. (1990b). Ondelettes et Opérateurs II: Opérateurs de CalderónZygmund. Hermann, Paris.

    Google Scholar 

  • Meyer, Y. (1990c). Ondelettes, filtres miroirs en quadrature et traitement numérique de l’image. In Lemarié, P. G., editor, Les Ondelettes en 1989, pages 14–25. Springer-Verlag, Berlin Heidelberg. Lecture Notes in Mathematics, vol. 1438.

    Chapter  Google Scholar 

  • Morlet, J., Arens, G., Fourgeau, E., and Giard, D. (1982). Wave propagation and sampling theory. Geophysics, 47(2):203–236.

    Article  Google Scholar 

  • Oppenheim, A. V. and Schafer, R. W. (1975). Digital Signal Processing. Prentice-Hall, Englwood Cliffs, NJ.

    Google Scholar 

  • Rioul, O. (1993). A discrete-time multiresolution theory. IEEE Trans. Signal Processing, 41(8):2591–2606.

    Article  MATH  Google Scholar 

  • Rioul, O. and Vetterli, M. (1991). Wavelets and signal processing. IEEE Signal Processing Mag., 8(4):14–38.

    Article  Google Scholar 

  • Shensa, M. J. (1992). The discrete wavelet transform: Wedding the a trous and Mallat algorithms. IEEE Trans. Signal Processing, 40(10): 2464–2482.

    Article  MATH  Google Scholar 

  • Simoncelli, E. P., Freeman, W. F., Adelson, E. H., and Heeger, D. J. (1992). Shiftable multiscale transform. IEEE Trans. Inform. Theory, 38 (2):587–607. Part II: Special Issue on Wavelet Transform and Multiresolution Signal Analysis.

    Article  MathSciNet  Google Scholar 

  • Smith, M. and Barnwell, T. P. (1986). Exact reconstruction techniques for tree-structured subband coders. IEEE Trans. Acoust., Speech, Signal Processing, 34(3):434–441.

    Article  Google Scholar 

  • Soman, A. K. and Vaidyanathan, P. P. (1993). On orthonormal wavelets and paraunitary filter banks. IEEE Trans. Signal Processing, 41(3): 1170–1183.

    Article  MATH  Google Scholar 

  • Strang, G. (1988). Linear Algebra and Its Applications. Harcourt Brace Jovanovich, Inc., San Diego, CA, third edition.

    Google Scholar 

  • Vetterli, M. (1992). Wavelets and filter banks for discrete-time signal processing. In Ruskai, M. B. et al., editors, Wavelets and Their Applications, pages 17–52. Jones and Bartlett Publishers, Boston, MA.

    Google Scholar 

  • Vetterli, M. and Herley, C. (1990). Wavelets and filter banks: Relationships and new results. In Proc. ICASSP-90, pages 1723–1726, Albuquerque.

    Google Scholar 

  • Vetterli, M. and Herley, C. (1992). Wavelets and filter banks: Theory and design. IEEE Trans. Signal Processing, 40(9):2207–2232.

    Article  MATH  Google Scholar 

  • Wornell, G. W. and Oppenheim, A. V. (1992). Estimation of fractal signals from noisy measurements using wavelets. IEEE Trans. Signal Processing, 40(3):611–623.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Doroslovački, M. (2001). Discrete-Time Wavelets. In: Petrosian, A.A., Meyer, F.G. (eds) Wavelets in Signal and Image Analysis. Computational Imaging and Vision, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9715-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9715-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5838-6

  • Online ISBN: 978-94-015-9715-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics