Skip to main content

Application of Molecular Markers to Genetic Diversity and Identity in Forage Crops

  • Conference paper
Book cover Molecular Breeding of Forage Crops

Part of the book series: Developments in Plant Breeding ((DIPB,volume 10))

Abstract

Molecular genetic tools have been utilised at a much slower pace for forage crops than for the human food crops. Recently, however, molecular marker systems have been incorporated in forage crop breeding to assist in selecting desirable genotypes, to examine genetic diversity and cultivar stability, and to be used for cultivar identification. Molecular tests range from ploidy determination using flow cytometry to exact DNA sequence identification of specific genes. Isozyme studies have shown that forage crops are complex genetically and not only have multiloci, but have multiallelic genetic systems. The PGI 2 locus, for example, has at least seven different allelic forms. Because of the genetic complexity, cultivars and germplasm should be characterised by allelic frequency differences. The AMOVA is a statistical tool that provides relative measures of within accession, among accession, and among broad groupings of genotypes. Choice of molecular test that can be analysed by AMOVA can be determined by the information desired. RAPDs are easy to implement on an individual plant basis and are relatively inexpensive. AFLPs are more expensive, but much more definitive than RAPDs. SSRs measure rather minute genetic changes that can be correlated to evolutionary or genealogical relatedness. Future implementation of ESTs, or SNPs identified by DNA sequence arrays will be used to separate accessions based on actual gene differences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn S, Tanksley SD (1993). Comparative linkage maps of the rice and maize genomes. Proceedings of the National Academy of Science USA 90: 7980–7984.

    Article  CAS  Google Scholar 

  • Akkaya MS, Bhagwat AA, Cregan PB (1992). Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132: 1131–1139.

    PubMed  CAS  Google Scholar 

  • Allard RW (1960). Principles of plant breeding John Wiley & Sons, Inc. New York.

    Google Scholar 

  • Association of Official Seed Analysts. (1991) Fluorescence test of ryegrass. AOSA Newsletter 65: 32–40.

    Google Scholar 

  • Casier MD, Pedersen JF, Eizenga GC, Stratton SD (1996). Germplasm and cultivar development. In: Cool-season forage grasses. Agronomy Monograph no. 34. Moser LE, Buxton DR, Casier MD (eds.) pp. 413–469.

    Google Scholar 

  • Caetano-Anollés G, Bassam BJ, Gresshoff PM (1991). DNA amplification fingerprinting using very short arbitrary oligonucleotide primers. Bio/Technology 9: 553–557.

    Article  PubMed  Google Scholar 

  • Charmet G, Balfourier F (1994). Isozyme variation and species relationships in the genus Lolium L. (ryegrasses, Graminaceae). Theoretical and Applied Genetics 87: 641–649.

    Article  CAS  Google Scholar 

  • Charmet G, Ravel C, Balfourier F (1997). Phylogenetic analysis in the Festuca-Lolium comples using molecular markers and ITS rDNA. Theoretical and Applied Genetics 94: 1038–1046.

    Article  CAS  Google Scholar 

  • Corkill L (1932). Inheritance of fluorescence in rye-grass. Nature (London) 130: 134.

    Article  Google Scholar 

  • Crow JF (1996). Preface In: The Evaluation of Forensic DNA Evidence National Research Council pp. v–vii. National Academy Press, Washington, D.C.

    Google Scholar 

  • Devos KM, Gale MD (1997). Comparative genetics in the grasses. Plant Molecular Biology 35: 3–15.

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131: 479–491.

    PubMed  CAS  Google Scholar 

  • Falconer DS Mackay TFC (1996). Introduction to quantitative genetics. Longman Group Ltd., Essex, England.

    Google Scholar 

  • Ferguson JM, Grabe DF (1984). Separation of annual and perennial species of ryegrass by electrophoresis of seed proteins. Journal of Seed Technology 9: 37–149.

    Google Scholar 

  • Forster JW, Jones ES, Kölliker R, Drayton MC, Dumsday JL, Dupal MP, Guthridge KM, Mahoney NL, van Zijll de Jong E, Smith KF (2000) Development and implementation of molecular markers for forage crop improvement. In: Molecular Breeding of Forage Crops, Spangenberg G (ed.), Kluwer Academic Publishers, Dordrecht, (this volume).

    Google Scholar 

  • Gentner G (1929) Uber die Verwendbarkeit von ultravioletten Strahlen bei der Samenprufung. Praktische Blatter Pflanzenbau und Pflanzenschutz. 6: 166–172.

    Google Scholar 

  • Gilliland TJ, Camlin MS, Wright CE (1982). Evaluation of phosohoglucoisomerase allozyme electrophoresis for the identification and registration of cultivars of perennial ryegrass (Lolium perenne). Seed Science & Technology 10: 415–430.

    Google Scholar 

  • Golembiewski RC, Danneberger TK, Sweeney, PM (1997). Potential of RAPD markers for use in the identification of creeping bentgrass cultivars. Crop Science 37: 212–214.

    Article  CAS  Google Scholar 

  • Halldén C, Hansen M, Nilsson MO, Hjerdin A, Säll T (1996). Competition as a source of errors in RAPD analysis. Theoretical and Applied Genetics 93: 1185–1192.

    Article  Google Scholar 

  • Hayward MD, McAdam NJ (1977). Isozyme polymorphism as a measure of distinctiveness and stability in cultivars of Lolium perenne. Zeitschrift für Pflanzenzüchtung 79: 59–68.

    Google Scholar 

  • Hayward MD, McAdam NJ (1984). Interpretation and application of isozyme techniques for variety discrimination in grasses, pp 78–84. In: Proceedings of the ISTA Symposium on Biochemical Tests for Cultivar Identification, Cambridge 1983. Draper SR, Cooke Rj (eds.) ISTA, Switzerland.

    Google Scholar 

  • Huff DR (1997) RAPD characterization of heterogeneous perennial ryegrass cultivars. Crop Science 37: 557–564.

    Article  CAS  Google Scholar 

  • Huff DR, Bara J (1993) Determining genetic origins of aberrant progeny from facultative apomictic Kentucky bluegrass using combination of flow cytometry and silver-stained RAPD markers. Theoretical and Applied Genetics 87: 201–208.

    Article  Google Scholar 

  • Huff DR, Palazzo AJ (1998) Fine fescue species determination of laser flow cytometry. Crop Science 38: 445–450.

    Article  Google Scholar 

  • Huff DR, Peakall R, Smouse PE (1993) RAPD variation within and among natural populations of outcrossing buffalograss [Buchloe dactyloides (Nutt.) Engelm.]. Theoretical and Applied Genetics 86: 927–934.

    Article  CAS  Google Scholar 

  • Krishnan HB, Sleper DA (1997) Identification of tall fescue cultivars by sodium dodecyl sulfate Polyacrylamide gel electrophoresis of seed proteins. Crop Science 37: 215–219.

    Article  CAS  Google Scholar 

  • Kurata N, Moore G, Nagamura Y, Foote T, Yano M, Minobe Y, Gale M (1994) Conservation of genome structure between rice and wheat. Bio/Technology 12: 276–278.

    Article  CAS  Google Scholar 

  • Linehan PA, Mercer SP (1933) Fluorescence of Lolium seedlings in ultra-violet light. Nature 131:202–203.

    Article  Google Scholar 

  • Lipshutz RJ, Morris M, Chee E, Hubbell MJ, Kozal N, Shah N, Shen R, Fodor SPA (1995) Using oligonucleotide probe arrays to access genetic diversity. Bio/Techniques 19: 442–447.

    CAS  Google Scholar 

  • Mengistu LW, Mueller-Warrant GW, Liston, A, Barker RE (2000) psbA mutation (valine219 to isoleucine) In: Poa annua resistant to metribuzin and diuron. Pest Management Science 56: 209–217.

    Article  CAS  Google Scholar 

  • Michalakis Y, Excoffier L (1900) A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics 142: 1061–1064.

    Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease- resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations Proceedings of the National Academy of Science USA 88: 9828–9832.

    Article  CAS  Google Scholar 

  • Möller M, Spoor W (1993) Discrimination and identification of Lolium species and cultivars by rapid SDS-PAG electrophoresis of seed storage proteins. Seed Science and Technology 21:213–223.

    Google Scholar 

  • Moore G, Devos, KM, Wang Z, Gale MD (1995) Cereal genome evolution. Current Biology 5: 737–739.

    Article  PubMed  CAS  Google Scholar 

  • Nitzsche W (1966) The inheritance of fluorescence in ryegrass (Lolium spp.). Zeitschrift für Pflanzenzüchtung 56: 88–95.

    Google Scholar 

  • Nyquist WE (1963) Fluorescent perennial ryegrass. Crop Science 3: 223–226.

    Article  Google Scholar 

  • Paterson AH (1996) The DNA revolution. In: Genome Mapping in Plants. Paterson, AH (ed.) pp. 95–110. (R.G. Landes Co.: Austin, TX).

    Google Scholar 

  • Pasakinskiene I, Griffiths CM, Bettany AJE, Paplauskiene, V, Humphreys MW (2000) Anchored simple-sequence repeats as primers to generated species-specific DNA markers in Lolium and Festuca grasses. Theoretical and Applied Genetics 100: 384–390.

    Article  CAS  Google Scholar 

  • Schena M, Shalon D, Heller RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467–470.

    Article  PubMed  CAS  Google Scholar 

  • Smith S, Helentjaris T (1996) DNA fingerprinting and plant variety protection. In: ‘Genome Mapping in Plants’ Paterson, AH (ed.) pp. 95–110. (R.G. Landes Co.: Austin, TX).

    Google Scholar 

  • Snape JW, Law CN, Parker, BB, Worland AJ (1985) Genetical analysis of chromosome 5A of wheat and its influence on important agronomic characters. Theoretical and Applied Genetics 71:518–526.

    Article  Google Scholar 

  • Staub JE, Gabert A, Wehner TC (1996) Plant variety protection: A consideration of genetic relationships. HortSciene? 31: 1086–1091.

    Google Scholar 

  • Sweeney P, Danneberger K (1994) Random amplified polymorphic DNA in perennial ryegrass: a comparison of bulk samples vs. individuals. HortScience 29: 624–626.

    CAS  Google Scholar 

  • Swofford DL, Olsen GJ, Waddell PJ, Hillis DM (1996) Phylogenetic inference. In: Molecular Systematics 2nd ed. Hillis DM, Moritz C, Mable BK (eds.) pp. 407–517. (Sinauer Associates, Inc.: Sunderland, MA).

    Google Scholar 

  • Trumble HC, Phipps IF (1933) The inheritance of fluorescence in hybrids between perennial rye-grass and Wimmera rye-grass. Journal Council Science and Industry Research 6: 170–178.

    Google Scholar 

  • Warnke SE, Douches DS, Branham BE (1997) Relationships among creeping bentgrass cultivars based on isozyme polymorphisms. Crop Science 37: 203–207.

    Article  CAS  Google Scholar 

  • Warnke SE, Douches DS, Branham BE (1998) Isozyme analysis supports allotetraploid inheritance in tetraploid creeping bentgrass (Agrostis palustris Huds.) Crop Science 38: 801–805.

    Article  CAS  Google Scholar 

  • Woodforde AH (1935) The inheritance of a substance in the roots of seedling hybrid derivatives of Lolium perenne L. x Lolium multiflorum Lam. causing a fluorescence reaction visible in filter-paper by screened ultra-violet light. Journal Linnean Society London 50: 141–150.

    Google Scholar 

  • Weir BS (1996) Genetic Data Analysis II. Sinauer Associates, Inc.: Sunderland, MA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Barker, R.E., Warnke, S.E. (2001). Application of Molecular Markers to Genetic Diversity and Identity in Forage Crops. In: Spangenberg, G. (eds) Molecular Breeding of Forage Crops. Developments in Plant Breeding, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9700-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9700-5_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5676-4

  • Online ISBN: 978-94-015-9700-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics