Skip to main content

Molecular Interactions Between Lolium Grasses and Their Fungal Symbionts

  • Conference paper
Book cover Molecular Breeding of Forage Crops

Part of the book series: Developments in Plant Breeding ((DIPB,volume 10))

Abstract

The protection of Lolium men stems from excess herbivory is vital to the reproductive success and distribution of this and other grass species. The development of symbiotic associations between grasses and endophytes of the Epichloël Neotyphodium group represents a unique form of biological protection where host and symbiont genomes have coevolved for mutual benefit. The fungus provides protection to the host through synthesis of a range of bioprotective metabolites in return for nutrients for growth and seed dissemination. Key fungal metabolites produced by Neotyphodium endophytes in association with perennial ryegrass (L perenne) include the lolitrems and ergopeptines; two classes of compounds that are toxic to mammalian livestock. Cloning the genes for these pathways is a major challenge as very little is known about the enzymology of toxin biosynthesis and conditions for endophyte synthesis of these metabolites ex planta have not been established. However, a major advance has been the cloning of gene clusters for the synthesis of the ergopeptine, ergotamine, from Claviceps purpurea and paxilline, an indole-diterpene closely related in chemistry to lolitrem B, from Penicillium paxilli. More recently, related genes have been cloned by PCR from Neotyphodium lolii. An overview of these advances and the opportunities now available to explore the molecular interactions between grass host and fungal symbiont are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arachevaleta M, Bacon CW, Hoveland CS, Radcliffe DE (1989) Effect of the tall fescue endophyte on plant response to environmental stress. Agron J 81:83–90.

    Article  Google Scholar 

  • Bacon CW, Porter JK, Robbins JD, Luttrell ES (1977) Epichloë typhina from toxic tall fescue grasses. Appl Env Microbiol 34:576–581.

    Google Scholar 

  • Ball OJ-P, Prestidge RA (1993) Endophyte associated alkaloids, insect resistance and animal disorders: an interrelated complex. NZ Vet J 41:216.

    Google Scholar 

  • Bultman TL, White JFJ, Bowdish TI, Welch AM, Johnston J (1995) Mutualistic transfer of Epichloë spermatia by Phorbia flies. Mycologia 87:182–189.

    Article  Google Scholar 

  • Bush LP, Wilkinson HH, Schardl CL (1997) Bioprotective alkaloids of grass-fungal endophyte symbioses. Plant Physiol 114:1–7.

    PubMed  CAS  Google Scholar 

  • Christensen MJ, Leuchtmann A, Rowan DD, Tapper BA (1993) Taxonomy of Acremonium endophytes of tall fescue (Festuca arundinacea), meadow fescue (F. pratensis) and perennial rye-grass (Lolium perenne). Mycolog Res 97:1083–1092.

    Article  Google Scholar 

  • Chung K-R, Schardl CL (1997) Vegetative compatibility between and within Epichloë species. Mycologia 89:558–565.

    Article  Google Scholar 

  • Collett MA, Bradshaw RE, Scott DB (1995) A mutualistic fungal symbiont of perennial ryegrass contains two different pyr4 genes, both expressing orotidine-5’-monophosphate decarboxylase. Gene 158:31–39.

    Article  PubMed  CAS  Google Scholar 

  • Fletcher LR, Harvey IC (1981) An association of a Lolium endophyte with ryegrass staggers. NZ Vet J 29:185–186.

    Article  CAS  Google Scholar 

  • Gallagher RT, White EP, Mortimer PH (1981) Ryegrass staggers: isolation of potent neurotoxins lolitrem A and lolitrem B from staggers-producing pastures. NZ Vet J 29:189–190.

    Article  CAS  Google Scholar 

  • Glenn AE, Bacon CW, Price R, Hanlin RT (1996) Molecular phylogeny of Acremonium and its taxonomic implications. Mycologia 88:369–383.

    Article  CAS  Google Scholar 

  • Gwinn KD, Gavin AM (1992) Relationship between endophyte infestation level oftall fescue and seed lots and Rhizoctonia zeae seedling disease. Plant Disease 76:911–914.

    Article  Google Scholar 

  • Herd S, Christensen MJ, Saunders K, Scott DB, Schmid J (1997) Quantitative assessment of in planta distribution of metabolic activity and gene expression of an endophytic fungus. Microbiology 143:267–275.

    Article  PubMed  CAS  Google Scholar 

  • Hill NS, Stringer WC, Rottinghaus GE, Belesky DP, Parrott WA, Pope DD (1990) Growth, morphological, and chemical component responses of tall fescue to Acremonium coenophialum. Crop Sci 30:156–161.

    Article  Google Scholar 

  • Hinton DM, Bacon CW (1985) The distribution and ultrastructure of the endophyte of toxic tall fescue. Can J Microbiol 63:36–42.

    Google Scholar 

  • Itoh Y, Johnson R, Scott B (1994) Integrative transformation of the mycotoxin-producing fungus, Penicillium paxilli. Curr Genet 25:508–513.

    Article  PubMed  CAS  Google Scholar 

  • Kimmons CA, Gwinn KD, Bernard EC (1990) Nematode reproduction on endophyte-infected and endophyte-free tall fescue. Plant Disease 74:757–761.

    Article  Google Scholar 

  • Koga H, Christensen MJ, Bennett RJ (1993) Incompatibility of some grassy Acremonium endophyte associations. Mycolog Res 97:1237–1244.

    Article  Google Scholar 

  • Kuldau GA, Tsai H-F, Schardl CL (1999) Genome sizes of Epichloë species and anamorphic hybrids. Mycologia 91:776–782.

    Article  CAS  Google Scholar 

  • Leuchtmann A, Clay K (1990) Isozyme variation in the Acremonium/Epichloë fungal endophyte complex. Phytopathology 80:1133–1139.

    Article  CAS  Google Scholar 

  • Moon CD, Scott B, Schardl CL, Christensen M J (2000) The evolutionary origins of Epichloë endophytes from annual ryegrasses. Mycologia (in press).

    Google Scholar 

  • Murray FR, Latch GCM, Scott DB (1992) Surrogate transformation of perennial ryegrass, Lolium perenne, using genetically modified Acremonium endophyte. Mol Gen Genet 233:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Panaccione DG (1996) Multiple families of peptide synthetase genes from ergopeptine-producing fungi. Mycolog Res 100:429–436.

    Article  CAS  Google Scholar 

  • Philipson MN, Christey MC (1986) The relationship of host and endophyte during flowering, seed formation, and germination on Lolium perenne. NZ J Bot 24:125–134.

    Article  Google Scholar 

  • Schardl CL (1996) Epichloë species: fungal symbionts of grasses, Ann Rev Phytopath 34:109–130.

    Article  CAS  Google Scholar 

  • Schardl CL (1997) Interactions of grasses with endophytic Epichloë species and hybrids. In: Stacey G, Keen NT(eds), Plant-Microbe Interactions. Chapman Hall, pp. 107–140.

    Chapter  Google Scholar 

  • Schardl CL, Leuchtmann A, Tsai H-F, Collett MA, Watt DM, Scott DB (1994) Origin of a fungal symbiont of perennial ryegrass by interspecific hybridization of a mutualist with the ryegrass choke pathogen, Epichloë typhina. Genetics 136:1307–1317.

    PubMed  CAS  Google Scholar 

  • Schardl CL, Liu J-S, White JF, Jr., Finkel RA, An Z-Q, Siegel MR (1991) Molecular phylogenetic relationships of nonpathogenic grass mycosymbionts and clavicipitaceous plant pathogens. Plant Syst Evol 178:27–41.

    Article  CAS  Google Scholar 

  • Schmid J, Spiering MJ, Christensen MJ (2000) Metabolic activity, distribution, and propagation of grass endophytes in planta: investigations using the GUS reporter gene system. In: Bacon CW, White JF Jr. (eds), Microbial Endophytes. Marcel Dekker, New York, pp. 295–322.

    Google Scholar 

  • Siegel MR, Latch GCM, Bush LP, Fannin FF, Rowan DD, Tapper BA, Bacon CW, Johnson MC (1990) Fungal endophyte-infected grasses: alkaloid accumulation and aphid response. J Chem Ecol 16:3301–3315.

    Article  CAS  Google Scholar 

  • Steyn PS, Vleggaar R (1985) Tremorgenic mycotoxins. Progress in the chemistry of organic natural products 48:1–80.

    PubMed  CAS  Google Scholar 

  • Tapper BA, Latch GCM (1999) Selection against toxin production in endophyte-infected perennial ryegrass. In: Woodfield DR, Matthew C (eds) Ryegrass endophyte: an essential New Zealand symbiosis. Grasslands Research and Practice Series No 7. Napier, New Zealand, pp. 107–111.

    Google Scholar 

  • TePaske MR, Powell RG, Clement SL (1993) Analyses of selected endophyte-infected grasses for the presence of loline-type and ergot-type alkaloids. J Agric Food Chem 41:2299–2303.

    Article  CAS  Google Scholar 

  • Tsai H-F, Liu J-S, Staben C, Christensen MJ, Latch GCM, Siegel MR, Schardl CL (1994) Evolutionary diversification of fungal endophytes of tall fescue grass by hybridization with Epichloë species. Proc Natl Acad Sci USA 91:2542–2546.

    Article  PubMed  CAS  Google Scholar 

  • Tsai H-F, Siegel MR, Schardl CL (1992) Transformation of Acremonium coenophialum, a protective fungal symbiont of the grass Festuca arundinacea. Curr Genet 22:399–406.

    Article  PubMed  CAS  Google Scholar 

  • Tsai H-F, Wang H, Gebier JC, Poulter CD, Schardl CL (1995) The Claviceps purpurea gene encoding dimethylallyltryptophan synthase, the committed step for ergot alkaloid biosynthesis. Biochem Biophys Res Commun 216:119–125.

    Article  PubMed  CAS  Google Scholar 

  • Tudzynski B, Hölter K (1998) Gibberellin biosynthetic pathway in Gibberella fujikuroi: evidence for a gene cluster. Fungal Genet Biol 25:157–170.

    Article  PubMed  CAS  Google Scholar 

  • Tudzynski P, Hölter K, Correia T, Arntz C, Grammel N, Keller U (1999) Evidence for an ergot alkaloid gene cluster in Claviceps purpurea. Mol Gen Genet 261:133–141.

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Machado C, Panaccione D, Schardl C (1999) Ergot alkaloid biosynthesis genes cloned from Claviceps and Balansia. Fungal Genet News 46:120.

    Google Scholar 

  • West CP, Izekor E, Oosterhuis DM, Robbins RT (1988) The effect of Acremonium coenophialum on the growth and nematode infestation of tall fescue. Plant Soil 112:3–6.

    Article  Google Scholar 

  • White JF, Jr., Bultman TL (1987) Endophyte-host associations in forage grasses. VIII. Heterothallism in Epichloëtyphina. Amer J Bot 74:1716–1721.

    Article  Google Scholar 

  • Young C, Itoh Y, Johnson R, Garthwaite I, Miles CO, Munday-Finch SC, Scott B (1998) Paxilline-negative mutants of Penicillium paxilli generated by heterologous and homologous plasmid integration. Curr Genet 33:368–377.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Scott, D.B. (2001). Molecular Interactions Between Lolium Grasses and Their Fungal Symbionts. In: Spangenberg, G. (eds) Molecular Breeding of Forage Crops. Developments in Plant Breeding, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9700-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9700-5_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5676-4

  • Online ISBN: 978-94-015-9700-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics