Skip to main content

Molecular Breeding for Herbage Quality in Forage Crops

  • Conference paper
Molecular Breeding of Forage Crops

Part of the book series: Developments in Plant Breeding ((DIPB,volume 10))

Abstract

Relatively small changes in quality of forage crops can lead to large changes in animal performance. Genetic changes in mineral elements, alkaloids, secondary metabolites, cell walls, protein, or energy availability are all possible using a combination of traditional and molecular breeding techniques. Because few major genes are known to regulate herbage quality traits, breeders have traditionally relied on quantitative trait loci (QTL) for genetic improvement of forage crops. A limited number of QTL for herbage quality traits have been mapped in maize (Zea mays L.), perennial ryegrass (Lolium perenne L.), and Pennisetum spp. As more QTL are identified, marker assisted selection for herbage quality may become a useful breeding method. Transgenic technology offers the potential to create genetic variability that does not exist in nature. Antisense cDNA constructs are available for all known enzymes in the phenylpropanoid pathway. Down-regulation of most enzymes leads to reduced lignin concentration or increased syringyl:guaiacyl residue ratios, usually increasing herbage digestibility. Sense cDNA constructs for rumen-stable proteins offer the opportunity to improve protein quality in numerous forage crops. Despite its glamour and potential, transgenic technology adds complexity to a forage breeding program, demanding close collaboration between molecular biologists and field-oriented plant breeders. Transgenic plants must be carefully evaluated for numerous agronomic traits in a wide array of field environments, as well as transgene stability and expression through multiple sexual generations, increasing the time and expense required to develop new cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arioli T, Peng L, Betzner AS, Burn J, Wittke W, Herth W, Camilleri C, Hofte H, Plazinski J, Birch R, Cork A, Glover J, Redmond J, Williamson RE (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279: 717–720.

    Article  PubMed  CAS  Google Scholar 

  • Barrière Y, Argillier O (1993) Brown-midrib genes of maize: a review. Agronomie 13: 865–876.

    Article  Google Scholar 

  • Baucher M, Bernard Vailhé MA, Chabbert B, Besle JM, Opsomer C, Van Montagu M, Botterman J (1999) Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L) and the effect on lignin composition and digestibility. Plant Mol Biol 39:437–447.

    Article  PubMed  CAS  Google Scholar 

  • Bergvinson DJ, Arnason JT, Hamilton RI, Mihm JA, Jewell DC (1994) Determining leaf toughness and its role in maize resistance to the European corn borer (Lepidoptera: Pyralidae). J Econ Entomol 87:1743–1748.

    Google Scholar 

  • Bernard Vailhé MA, Besle JM, Maillot MP, Cornu A, Halpin C, Knight M (1998) Effect of down-regulation of cinnamyl alcohol dehydrogenase on cell wall composition and on degradability of tobacco stems. J Sci Food Agric 76: 505–514.

    Article  Google Scholar 

  • Bernard Vailhé MA, Migné C, Cornu A, Maillot MP, Grenet E, Besle JM (1996) Effect of modification of the O-methyltransferase activity on cell wall composition, ultrastructure and degradability of transgenic tobacco. J Sci Food Agric 72: 385–391.

    Article  Google Scholar 

  • Birch RG (1997) Plant Transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48: 297–326.

    Article  PubMed  CAS  Google Scholar 

  • Boudet AM, Grima-Pettenati J (1996) Lignin genetic engineering. Mol Breed 2: 25–39.

    Article  CAS  Google Scholar 

  • Bouton JH, Bauchan GR (1998) “Report of the thirty-sixth North American alfalfa improvement conference.” 2–6 Aug 1998 North American Alfalfa Improvement Conference, USDA-ARS, Beltsville, MD.

    Google Scholar 

  • Broderick GA, Buxton DR (1991) Genetic variation in alfalfa for ruminai protein degradability. Can J Plant Sci 71: 755–760.

    Article  Google Scholar 

  • Campbell MM, Sederof, RR (1996) Variation in lignin content and composition. Mechanisms of control and implications for the genetic improvement of plants. Plant Physiol 110:3–13.

    PubMed  CAS  Google Scholar 

  • Casier MD (1999) Correlated responses in forage yield and nutritional value from phenotypic recurrent selection for reduced fiber concentration in smooth bromegrass. Theor Appl Genet 99: 1245–1254.

    Article  Google Scholar 

  • Casier, MD (2000) Breeding forage crops for increased nutritional value. Advan Agron (in press).

    Google Scholar 

  • Casier MD, Jung HG (1999) Selection and evaluation of smooth bromegrass clones with divergent lignin or etherified ferulic acid concentration. Crop Sci 39: 1866–1873.

    Article  Google Scholar 

  • Casier MD, Vogel KP (1999) Accomplishments and impact from breeding for increased forage nutritional value. Crop Sci 39: 12–20.

    Article  Google Scholar 

  • Chappie CCS, Vogt T, Ellis BE, Somerville CR (1992) An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell 4:1413–1424.

    Google Scholar 

  • Chen F, Yasuda S, Fukushima K (1999) Evidence for a novel biosynthetic pathway that regulates the ratio of syringyl to guaiacyl residues in lignin in the differentiating xylem of Magnolia kobus DC. Planta 207: 597–603.

    Article  CAS  Google Scholar 

  • Cherney JH, Cherney DJR, Akin DE, Axtell JD (1991) Potential of brown-midrib, low- lignin mutants for improving forage quality. Advan Agron 46: 157–198.

    Article  CAS  Google Scholar 

  • Dale PJ (1995) R & D regulation and field trialling of transgenic crops. Trends Biotech 13: 398–403.

    Article  CAS  Google Scholar 

  • Dudley JW (1993) Molecular markers in plant improvement: mainpulation of genes affecting quantitative traits. Crop Sci 33: 660–668.

    Article  CAS  Google Scholar 

  • Elkind Y, Edwards R, Mavandad M, Hedrick SA, Ribak O, Dixon RA, Lamb CJ (1990) Abnormal plant development and down-regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonialyase gene. Proc Natl Acad Sci USA 87:9057–9061.

    Article  PubMed  CAS  Google Scholar 

  • Gallie DR (1998) Controlling gene expression in transgenics. Curr Opin Plant Biol 1: 166–172.

    Article  PubMed  CAS  Google Scholar 

  • Halpin C, Holt K, Chojecki J, Oliver D, Chabbert B, Monties B, Edwards K, Barakate A, Foxon GA (1998) Brown-midrib maize (bm1) — a mutation affecting the cinnamyl alcohol dehydrogenase gene. Plant J 14: 545–553

    Article  PubMed  CAS  Google Scholar 

  • Hayward MD, McAdam NJ, Jones JG, Evans C, Evans GM, Forster JW, Ustin A, Hossain KG, Quader B, Stammers M, Will JK (1994) Genetic markers and the selection of quantitative traits in forage grasses. Euphytica 77:269–275.

    Article  Google Scholar 

  • Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai CJ, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nature Biotech 17: 808–812.

    Article  CAS  Google Scholar 

  • Humphreys MO (1992) Association of agronomic traits with isozyme loci in perennial ryegrass (Lolium perenne L.). Euphytica 59: 141–150.

    Article  Google Scholar 

  • Inoue K, Sewalt VJH, Ballance GM, Ni W, Stürtzer C, Dixon RA (1998) Developmental expression and substrate specificities of alfalfa caffeic acid 3-O-methyltransferase and caffeoyl coenzyme A 3-O-methyltransferase in relation to lignification. Plant Physiol 117: 761–770.

    Article  PubMed  CAS  Google Scholar 

  • Jung HG, Ni W (1998) Lignification of plant cell walls: Impact of genetic manipulation. Proc Natl Acad Sci USA 95: 12742–12743.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy PM, Milligan LP (1978) Quantitative aspects of the transformations of sulphur in sheep. Brit J Nutr 39: 65–84.

    Article  PubMed  CAS  Google Scholar 

  • Khan MRI, Ceriotti A, Tabe L, Aryan A, McNabb W, Moore A, Craig S, Spencer D, Higgins TJV (1996) Accumulation of a sulfur-rich seed albumin from sunflower in the leaves of transgenic subterranean clover (Trifolium subterranewn L). Transgenic Res 5: 179–185.

    Article  PubMed  CAS  Google Scholar 

  • Kokubo A, Sakurai N, Kuraishi S, Takeda K (1991) Culm brittleness of barley (Hordeum vulgare L.) mutants is caused by smaller number of cellulose molecules in cell wall. Plant Physiol 97: 509–514.

    Article  PubMed  CAS  Google Scholar 

  • Li LG, Osakabe Y, Joshi CP, Chiang VL (1999) Secondary xylem-specific expression of caffeoyl-coenzyme A 3-O-methyltransferase plays an important role in the methylation pathway associated with lignin biosynthesis in loblolly pine. Plant Mol Biol 40: 555–565.

    Article  PubMed  CAS  Google Scholar 

  • Lübberstedt T, Melchinger AE, Klein D, Degenhardt H, Paul C (1997) QTL mapping in testcrosses of European flint lines of maize. II. Comparison of different testers for forage quality traits. Crop Sci 37: 1913–1922.

    Article  Google Scholar 

  • Lübberstedt T, Melchinger AE, Fähr S, Klein D, Dally A, Westhoff P (1998) QTL mapping in testcrosses of European flint lines of maize. II. Comparison across populations for forage traits. Crop Sci 38: 1278–1289.

    Article  Google Scholar 

  • Marten GC (1989) Breeding forage grasses to maximize animal performance. In: Sleper DA, Asay KH, Pedersen JF (eds) Contributions from breeding forage and turf grasses. Crop Sci Soc Amer Spec Publ 15 CSSA, Madison, WI, pp 71–104.

    Google Scholar 

  • Matzke MA, Matzke AJM (1995) How and why do plants inactivate homologous (trans)genes? Plant Physiol 107: 679–685.

    PubMed  CAS  Google Scholar 

  • Mazur BJ (1995) Commercialization of the products of plant biotechnology. Trends Biotech 13:319–323.

    Article  CAS  Google Scholar 

  • McElroy D (1999) Moving agbiotech downstream. Nature Biotech 17: 1071–1074.

    Article  CAS  Google Scholar 

  • Meyer K, Shirley AM, Cusumano JC, Bell-Lelong DA, Chappie C (1998) Lignin monomer composition is determined by the expression of a cytochrome P450-dependent monooxygenase in Arabidopsis. Proc Natl Acad Sci USA 95: 6619–6623.

    Article  PubMed  CAS  Google Scholar 

  • Osakabe K, Tsao CC, Li LG, Popko JL, Umezawa T, Carraway DT, Smeltzer RH, Joshi CP, Chiang VL (1999) Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms. Proc Natl Acad Sci USA 96: 8955–8960.

    Article  PubMed  CAS  Google Scholar 

  • Ostrander BM, Coors JG (1997) Relationship between plant composition and European corn borer resistance in three maize populations. Crop Sci 37: 1741–1745.

    Article  Google Scholar 

  • Potihka T, Delmer DP (1995) A mutant of Arabidopsis thaliana displaying altered patterns of cellulose deposition. Plant J 7:453–460.

    Article  Google Scholar 

  • Ralph J, MacKay JJ, Hatfield RD, O’Mallory DM, Whetten RW, Sederoff RR (1997) Abnormal lignin in a loblolly pine mutant. Science 277: 235–239.

    Article  PubMed  CAS  Google Scholar 

  • Reiter WD, Chappie CCS, Somerville CR (1993) Altered growth and cell walls in a fucose-deficient mutant of Arabidopsis. Science 261: 1032–1035.

    Article  PubMed  CAS  Google Scholar 

  • Sewalt VJH, Ni W, Jung HG, Dixon RA (1997) Lignin impact on fiber degradation: increased enzymatic digestibility of genetically engineered tobacco (Nicotiana tabacum) stems reduced in lignin content. J Agric Food Chem 45: 1977–1983.

    Article  CAS  Google Scholar 

  • Smith C (1967) Improvement of metric traits through specific genetic loci. Anim Prod 9: 349–358.

    Article  Google Scholar 

  • Smith KF, Simpson RJ, Oram RN, Dove H, Culvenor RA, Humphreys MO, Boller B, Stadelmann FJ (1998) Increasing the nutritive value of perennial ryegrass in dairy pastures of temperate Australia. In: Boller B (ed.) Breeding for a multifunctional agriculture. Proceedings of the 21st meeting of the EUCARPIA Fodder Crops and Amenity Grasses Section 9–12 Sept. 1997 Swiss Fed Res Stn Agrecol and Agric, Zurich.

    Google Scholar 

  • Smith RL, Schweder ME, Chowdhury MKU, Scib JC, Schänk SC (1993) Development and application of RFLP and RAPD DNA markers in genetic improvement of Pennisetum for biomass and forage production. Biomass Bioenergy 5:51–62.

    Article  Google Scholar 

  • Sprenger N, Schellenbaum L, Dun K van, Boiler T, Wiemken A, Van Dun K (1997) Fructan synthesis in transgenic tobacco and chicory plants expressing barley sucrose:fructan 6- fructosyltransferase. FEBS Letters 400: 355–358.

    Article  PubMed  CAS  Google Scholar 

  • Tabe LM, Higgins CM, McNabb WC, Higgins TJV (1993) Genetic engineering of grain and pasture legumes for improved nutritive value. Genetica 90: 181–200.

    Article  PubMed  CAS  Google Scholar 

  • Tabe LM, Wardley-Richardson T, Ceriotti A, Aryan A, McNabb W, Moore A, Higgins TJV (1995) A biotechnological approach to improving the nutritive value of alfalfa. J Anim Sci 73: 2752–2759.

    PubMed  CAS  Google Scholar 

  • Tsai CJ, Popko JL, Mielke MR, Hu WJ, Podila GK, Chiang VL (1998) Suppression of O- methyltransferase gene by homologous sense transgene in quaking aspen causes red- brown wood phenotypes. Rant Physiol 117:101–112.

    CAS  Google Scholar 

  • Vignols F, Rigau J, Torres MA, Capellades M, Puigdomenech P (1995) The brown midrib3 (bmr3) mutation in maize occurs in the gene encoding caffeic acid Omethyltransferase. Plant Cell 7: 407–416.

    PubMed  CAS  Google Scholar 

  • Vogel KP, Sleper DA (1994) Alteration of plants via genetics and plant breeding. In: Fahey GC, Collins M, Mertens DR, Moser LE (eds.) Forage quality, evaluation, and utilization. Amer Soc Agron, Madison, WI, pp 891–921.

    Google Scholar 

  • Yahiaoui N, Marque C, Myton KE, Negrel J, Boudet AM (1998) Impact of different levels of cinnamyl alcohol dehydrogenase down-regulation on lignins of transgenic tobacco plants. Planta 204: 8–15.

    Article  CAS  Google Scholar 

  • Zhong R, Morrisson WH III, Negrel J, Ye ZH (1998) Dual methylation pathways in lignin biosynthesis. Plant Cell 10: 2033–2045.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Casler, M.D., Kaeppler, H.F. (2001). Molecular Breeding for Herbage Quality in Forage Crops. In: Spangenberg, G. (eds) Molecular Breeding of Forage Crops. Developments in Plant Breeding, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9700-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9700-5_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5676-4

  • Online ISBN: 978-94-015-9700-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics