Skip to main content

Strain ratio as the measure of plastic anisotropy

  • Chapter
  • 187 Accesses

Abstract

Each stage in the production of metal sheet, i.e. casting, plastic working and heat treatment leads to the formation of preferred crystallographic orientation. The texture is an important (though not the exclusive) cause of anisotropy of physical properties, including plastic properties of metals and alloys. Anisotropy can be observed in metals submitted to some procedure. The anisotropy effects — permanent or transient — are easily found in every crystal. It may also be the consequence of the uniform distribution of the second phase, or impurities and segregation products following the plastic working. When the function defining the impact of internal stresses on a certain physical variable is not linear, it is possible that internal stresses cause anisotropy. Finally, the neighbouring crystals in a polycrystalline sample interact in the tension test; the effect of such interaction depends on their mutual crystallographic orientation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ch. S. Barrett and T.B. Massalski, Structure of Metals. Crystallographic methods, principles and data, Third edition., McGraw-Hill Book Company, New York, 540, (1966).

    Google Scholar 

  2. H.W. Brownsdon, Discussion at Birmingham, J. Inst. Met., 60, 178 (1937).

    Google Scholar 

  3. J.D. Jevons, Discussion at Birmingham, J. Inst. Met., 60, 174 (1937).

    Google Scholar 

  4. W.M. Baldwin Jr., T.S. Howald and A.W. Ross, Relative Triaxial Deformation Rates, Trans. Am. Inst. Mining Metall. Eng., 166, 86 (1946).

    Google Scholar 

  5. W.T. Lankford, J.R. Low and M. Gensamer, The Plastic Flow of Aluminium Alloy Sheet under Combined Loads, Trans. Am. Inst. Mining Metall. Eng., 171, 574 (1947).

    Google Scholar 

  6. R. Hill, A theory of the yielding and plastic flow of anisotropic metals, Proc. Roy. Soc, Series A, 193, 218(1948).

    Google Scholar 

  7. R. Hill, The Mathematical Theory of Plasticity, Oxford 1971 (first published in 1950).

    Google Scholar 

  8. L.R. Jackson, K.F. Smith and W.T. Lankford, Plastic Flow in Anisotropic Sheet Steel, Metals Technology. Am. Inst. Mining Metall. Eng. August, 1948, T.P.2440.

    Google Scholar 

  9. A. Krupkowski and S. Kawiński, The Phenomenon of Anisotropy in Annealed Polycrystalline Metals, J. Inst. Metals, 75, 869 (1949).

    Google Scholar 

  10. W.T. Lankford, S.C. Snyder and J.A. Bauscher, New Criteria for Predicting the Press Performance of Deep Drawing Sheets, Trans. Am. Soc. for Metals, 42, 1197 (1950).

    Google Scholar 

  11. R.H. Heyer and R.L. Solter, Written Discussion (of paper 3.10), Trans. Am. Soc. for Metals, 42, 1226(1950).

    Google Scholar 

  12. W. Truszkowski, Zagadnienie anizotropii zgniecionych metali polikrystalicznych, Arch. Hutn., 1, 171 (1956).

    Google Scholar 

  13. W. Truszkowski et Z. Bojarski, Sur l’anisotropie de l’acier inoxydable 18/8 laminé à froid, Mém. Sci. Rev. Métallurg., 59, 112 (1962).

    Google Scholar 

  14. G. Pomey et M. Grumbach, Quelques corrélations entre les coefficients d’anisotropie et d’écrouissage et les essais d’emboutissage, Rev. de Mét., 61, 885 (1964).

    Google Scholar 

  15. W. Truszkowski, On the Plastic Anisotropy of Metals Defined by the Strain Ratio, Bull. Acad. Pol. Sci., sér. techn., 15, 717 (1967).

    Google Scholar 

  16. W. Truszkowski, Experimental Contribution to the Method of Measuring the Strain Ratio of Metals, Bull. Acad. Pol. Sci., sér. techn., 15, 805 (1967).

    Google Scholar 

  17. W. Truszkowski and J. Jarominek, Plastic Anisotropy of Cold Rolled Copper, Arch. Hutn., 14, 309(1969).

    Google Scholar 

  18. W. Truszkowski et J. Król, Sur l’évaluation quantitative de l’anisotropie des métaux, C.R.Acad. Sci. Paris., 269, 807(1969).

    Google Scholar 

  19. W. Truszkowski, J. Dutkiewicz and J. Szpunar, Evolution de la texture et de l’anisotropie lors du laminage du laiton, Mém. Sci. Rev. Métallurg., 67, 355 (1970).

    Google Scholar 

  20. W. Truszkowski, Sur le sens physique du rapport des allongements obtenu par la méthode d’extrapolation, La Metalurgia Italiana, 24, 489 (1969).

    Google Scholar 

  21. W. Truszkowski et J. Król, Tendance á l’anisotropie des métaux cubiques à faces centrées laminés à froid, Mém. Sci. Rev. Métallurg, 67, 201 (1970).

    Google Scholar 

  22. W. Truszkowski et J. Jarominek, Essai de synthèse des recherches sur l’anisotropie plastique, Mém. Sci. Rev. Métallurg., 70, 433(1973).

    Google Scholar 

  23. G. Jegaden, J. Voinchet et P. Rocquet, Contribution à l’étude de la déformation plastique des tôles, Mém. Sci. Rev. Metallurg., 59, 273 (1962).

    Google Scholar 

  24. W. Truszkowski, On the Quantitative Evaluation of Plastic Anisotropy in Sheet Metals, Proc. 8th Biennial Congress of IDDRG, Gothenburg, 48 (1974).

    Google Scholar 

  25. Ch. Michaluk, J. Bingert and C.S. Choi, The Effects of Texture and Strain on the R — Value of Heavy Gauge Tantalum Plate, Mem. Sci. Forum, 157162, 1653 (1994), Textures and Materials, Proc. ICOTOM-10, Clausthal, 1993.

    Article  Google Scholar 

  26. Hsun Hu, The Strain Dependence of Plastic Strain Ratio (r m value) of Deep Drawing Steel Sheets Determined by Simple Tension Test, Met. Trans., 6A, 945 (1975).

    Google Scholar 

  27. Hsun Hu, Effect of Plastic Strain on the r — Value of Textured Steel Sheet, Met. Trans., 6A, 2307(1975).

    Google Scholar 

  28. W. Truszkowski, Influence of Strain on the Plastic Strain Ratio in Cubic Metals, Met. Trans., 7A, 327(1976).

    Google Scholar 

  29. J. Kuśnierz, Właściwa wartośc współczynnika anizotropii, Rudy Metale, 21, 15 (1976).

    Google Scholar 

  30. J. Kuśnierz et Z. Jasieński, Courbe de traction et valeur propre du coefficient d’anisotropie des tôles d’aluminium, du cuivre et de laiton, Mém. Sci. Rev. Métallurg., 73, 485(1976).

    Google Scholar 

  31. A.M. Garde, R.E. Reed-Hill, Dual Analysis of Longitudinal and Transverse Zirconium Tensile Stress — Strain Data, Special Technical Publication 551, Am. Soc. Test. Mater., 75(1974).

    Google Scholar 

  32. W. Truszkowski, A. Łatkowski and A. Dziadoń, Stress — Strain Behaviour and Microstructure of Polycrystalline Alpha-Titanium, Proc. 2nd Risø. Intern. Symp. on Metallurgy and Mat. Science, 383 (1981).

    Google Scholar 

  33. R.E. Reed-Hill, W.R. Cribb and S. Monteiro, An Empirical Analysis of Titanium Stress -Strain Curves, Met. Trans., 4, 1011 (1973).

    Article  Google Scholar 

  34. R.E. Reed-Hill, W.R. Cribb and S. Monteiro, Concerning the Analysis of Tensile Stress -Strain Data Using log dσ/dε p Versus log σ Diagrams, Met. Trans., 4, 2665 (1973).

    Article  Google Scholar 

  35. S. Krishnamurthy, K.W. Qian and R.E. Reed-Hill, Effects of Deformation Twinning on the Stress — Strain Curves of Low Stacking Fault Energy Face-Centered Cubic Alloys, Practical Applications of Quantitative Metallography, ASTM STP 839, Philadelphia, 41 (1984).

    Google Scholar 

  36. W. Truszkowski and S. Wierzbiński, Institute for Metal Research PAS, (Unpublished).

    Google Scholar 

  37. W. Truszkowski, A. Modrzejewski and J. Baczyński, Variation of the Strain Ratio in Tensile Tested [110] Brass Single Crystals, Bull. Pol. Ac: Techn., 37, 471 (1989).

    Google Scholar 

  38. W. Truszkowski and J. Kloch, The Variation of Strain Ratio at the Tensile Test Described by a Hyperbolic Function, Textures and Microstructures, 2627, 531 (1996).

    Article  Google Scholar 

  39. A. Krupkowski, Anizotropia mono- i polikrystalicznego metalu o strukturze A1, Arch.Hutn., 2, 9(1957).

    Google Scholar 

  40. W. Truszkowski and J. Kloch, New Aspects of Plastic Anisotropy in Metals, Bull. Pol. Ac: Techn., 46, 299(1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Truszkowski, W. (2001). Strain ratio as the measure of plastic anisotropy. In: The Plastic Anisotropy in Single Crystals and Polycrystalline Metals. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9692-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9692-3_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5662-7

  • Online ISBN: 978-94-015-9692-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics