Skip to main content

Statistical Design and Analysis in Long-Term Vegetation Monitoring

  • Chapter

Part of the book series: Tasks for vegetation science ((TAVS,volume 35))

Abstract

Succession theories and related methods for time series analysis are presented and illustrated by examples using published data. Starting from a rather general definition of succession which is understood as any directional change of vegetation in time, the phenomena can be distinguished at three different levels of perception: pattern, process and mechanism. Pattern is the phenomenon perceived and reflected in the sample data. Process is a grammar generating this pattern (Dale 1980). Both can be accessed by appropriate statistical analysis. Mechanisms are the causes of the changes. Whereas in some cases they can be inferred from patterns and processes, they cannot be observed or measured directly.

The methods and examples described include the statistical design of long-term investigations, the analysis of community dynamics using Markov chains, pattern analysis by ordination, the analysis of temporal autocorrelation and fuzzy ordination for fitting time series data to a time vector. In most methods, the results can be tested for the existence of trends using Monte Carlo simulation. Experience suggests that directional changes can only be interpreted if the data cover a reasonable number of time steps.

Kurzfassung

Sukzessionstheorien und dazugehörige Methoden für die Analyse von Zeitreihendaten werden vorgestellt und an Beispielen von publizierten Daten illustriert. Ausgehend von einer sehr weit gefassten Definition von Sukzession, die als gerichtete Veränderung der Vegetation verstanden wird, können Phänomene auf drei verschiedenen Perzeptionsstufen unterschieden werden: jener der Muster, der Prozesse und der Mechanismen. Das Muster ist das Erscheinungsbild, wie es in den Daten auftritt. Der Prozess ist eine Grammatik, die das Muster zu generieren erlaubt (Dale 1980). Beide können mit geeigneten statistischen Methoden untersucht werden. Mechanismen sind die Ursachen der Veränderungen. Manchmal kann von den Mustern und Prozessen auf Mechanismen geschlossen werden, doch können sie in der Regel nicht direkt beobachtet oder gemessen werden.

Die vorgestellten Methoden und Beispiele umfassen das statistische Erhebungskonzept von Langzeituntersuchungen, die Analyse von Gesellschaftsdynamik mittels Markovketten, Mustererkennung mittels Ordination, die Analyse zeitlicher Autokorrelation und eine Fuzzy-Ordination, um Zeitreihendaten einem Zeitvektor anzupassen. In den meisten Methoden können die Resultate auf die Existenz eines Zeittrends hin getestet werden, wobei Monte Carlo-Simulation zum Einsatz kommt. Die Erfahrungen zeigen, dass gerichtete Veränderungen in der Regel nur interpretiert werden können, wenn genügend Zeitschritte dokumentiert sind.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anand, M. 1997. Towards a unifying theory of vegetation dynamics. The University of Western Ontario, Canada, PhD thesis. (Manuscript.)

    Google Scholar 

  • Austin, M.P., Nicholls, A.O., Doherty, M.D. & Meyers, J.A. 1994. Determining species response functions to an environmental gradient by means of a ß-function. J. Veg. Sci. 5: 215–228.

    Article  Google Scholar 

  • Begon, M., Harper, J.L. & Townsend, C.R. 1996. Ecology. 3rd ed. Blackwell Science, Oxford.

    Google Scholar 

  • Clements, F.E. 1916. Plant Succession: Analysis of the Development of Vegetation. Carnegie Institute of Washington Publication No. 242. Washington DC.

    Google Scholar 

  • Connell, J.H. & Slatyer, R.O. 1977. Mechanisms of succession in natural communities and their role in community stability and organisation. American Naturalist 111: 1119–1144.

    Article  Google Scholar 

  • Dale, M.B. 1980. A syntactic basis of classification. Vegetatio 42: 93–98.

    Article  Google Scholar 

  • De Patta Pillar, V. & Orlóci, L. 1993. Taxonomy and perception in vegetation analysis. Coenoses 8(1): 53–66.

    Google Scholar 

  • De Wit, C.T. & Goudriaan, J. 1974. Simulation of ecological process. Wageningen, Centre for Agricultural Publishing and Documentation.

    Google Scholar 

  • Dierschke, H. 1996. Sukzession, Fluktuation und Stabilität von Flussufer-Gesellschaften. Ergebnisse 15-jähriger Dauerflächen-Untersuchungen an der Oder (Harz-Vorland). Braunschweiger Kolloquium zur Ufervegetation von Flüssen. Braunschweiger Geobotanische Arbeiten 4: 93–116.

    Google Scholar 

  • Ellenberg, H., Weber, H.E., Düll, R., Wirth, V., Werner, W. & Paulissen, D. 1991. Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica XVIII: 1–248.

    Google Scholar 

  • Feoli, E. & Zuccarello, V. 1988. Syntaxonomy: A source of useful sets for environmental analysis? Coenoses 3: 141–147.

    Google Scholar 

  • Gauch, G.H. 1982. Multivariate analysis in community ecology. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Gleason, H.A. 1939. The individualistic concept of the plant association. Amer. Midl. Nat. 21: 92–110.

    Article  Google Scholar 

  • Green, R.H. 1979. Sampling Design and Statistical Methods for Environmental Biologists. Wiley & Sons, New York, Chichester, Brisbane, Toronto.

    Google Scholar 

  • Grime, J.P. 1979. Plant Strategies and Vegetation Process. Wiley, Chichester.

    Google Scholar 

  • Harcombe, P.A., Palmer, M. & Mucina, L. 1997. The importance of spatial and temporal perspectives for understanding vegetation pattern and process: Introduction. J. Veg. Sci. 8: 1–162.

    Article  Google Scholar 

  • Landolt, E. 1997. Ökologische Zeigerwerte zur Schweizer Flora. Veröff. Geobot. Inst. ETH, Stiftung Rübel, Zürich 64: 1–208.

    Google Scholar 

  • Legendre, P. & Fortin, M.-J. 1989. Spatial pattern and ecological analysis. Vegetatio 80: 107–138.

    Article  Google Scholar 

  • Lippe, E., De Smidt, J.T. & Glenn-Lewin, D.C. 1985. Markov models and succession: A test from a heathland in the Netherlands. J. Ecol. 73: 775–791.

    Article  Google Scholar 

  • Maarel, van der, E., Janssen, J.G.M. & Louppen, J.M.W. 1978. Tabord, a program for clustering phytosociological tables. Vegetatio 38: 143–156.

    Article  Google Scholar 

  • Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209–220.

    PubMed  CAS  Google Scholar 

  • Marsili-Libelli, S. 1989. Fuzzy clustering of ecological data. Coenoses 4(2): 95–106.

    Google Scholar 

  • Moral, R. & Bliss, J.A. 1993. Mechanisms of primary succession: insights resulting from the eruption of Mount St. Helens. Advances in Ecological Research 24: 1–66.

    Article  Google Scholar 

  • Moral, R. 1983. Initial recovery of subalpine vegetation on Mount St. Helens, Washington. Am. Midl. Nat. 109: 72–79.

    Article  Google Scholar 

  • Orlóci, L. 1978. Multivariate Analysis in Vegetation Research. 2nd ed. Junk, The Hague.

    Google Scholar 

  • Orlóci, L., Anand, M. & He, X. 1993. Markov chain: a realistic model for temporal coenosere? Biom. Praxim. 33: 7–26.

    Google Scholar 

  • Podani, J. 1984. Spatial processes in the analysis of vegetation: theory and review. Acta Botanica Hungarica 30: 75–118.

    Google Scholar 

  • Roberts, D.W. 1986. Ordination on the basis of fuzzy set theory. Vegetatio 66: 123–131.

    Article  Google Scholar 

  • Scott Urquhart, N., Scott Overton, W. & Birkes, D.S. 1993. Comparing sampling designs for monitoring ecological status and trends: Impact of temporal patterns. pp. 72-84. In: Barnett, V. & Turkman, K.F. (eds), Statistics for the Environment. Wiley & Sons.

    Google Scholar 

  • Sokal, R.R. 1986. Spatial data analysis and historical processes. pp. 29–43. In: Diday, E. et al. (eds), Data analysis and informatics, IV. Proceedings of the Fourth International Symposium on Data Analysis and Informatics, Versailles, France, 1985. North-Holland, Amsterdam.

    Google Scholar 

  • Ter Braak, C.F.J. & Looman, C.W.N. 1987. Regression. pp. 29-77. In: Jongman, R.H.G., ter Braak, C.J.F. & van Tongeren, O.F.R. (eds), Data analysis in community and landscape ecology. Pudoc, Wageningen.

    Google Scholar 

  • Tilman, D. 1988. Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Usher, M.B. 1981. Modelling ecological succession, with particular reference to Markovian model. Vegetatio 46: 11–18.

    Article  Google Scholar 

  • Wagner, H.H. & Wildi, O. 1997. Markov chains and vegetation monitoring. Student 2(1): 13–26.

    Google Scholar 

  • Watt, A.S. 1947. Pattern and process in the plant community. J. Ecol. 35: 1–22.

    Article  Google Scholar 

  • Whittaker, R.H. 1953. A consideration of climax theory: the climax as a population and pattern. Ecological Monographs 23: 41–78.

    Article  Google Scholar 

  • Whittaker, R.H. 1967. Gradient analysis of vegetation. Biol. Rev. 42: 207–264.

    Article  PubMed  CAS  Google Scholar 

  • Whittaker, R.H. 1978. Direct gradient analysis. pp. 7–50 In: Whittaker, R.H. (ed), Ordination of Plant Communities. Junk, The Hague.

    Chapter  Google Scholar 

  • Wildi, O. 1977. Beschreibung exzentrischer Hochmoore mit Hilfe quantitativer Methoden. Veröff. Geobot. Inst. ETH, Stiftung Rübel 60: 1–128.

    Google Scholar 

  • Wildi, O. 1988. Linear trend and noise in multi-species time series. Vegetatio 77: 51–56.

    Article  Google Scholar 

  • Wildi, O. 1990. A multiple scale sampling design for long term monitoring. Global Natural Resource Monitoring and Assessments: Preparing for the 21st Century. Proceedings of the International Conference and Workshop, Vol. 2. Bethesda, U.S.A.: 975-982.

    Google Scholar 

  • Wildi, O. & Orlóci, L. 1996. Numerical exploration of community patterns. A guide to the use of MULVA-5. 2nd ed. SPB Academic Publishing bv, The Hague.

    Google Scholar 

  • Winkler, E. & Klotz, S. 1997. Long-term control of species abundances in a dry grassland: a spatially explicit model. J. Veg. Sci. 8: 189–198.

    Article  Google Scholar 

  • Zimmermann, H.J. 1985. Fuzzy Set Theory and Its Applications. Kluwer-Nijmhoff Publishing, Boston.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wildi, O. (2001). Statistical Design and Analysis in Long-Term Vegetation Monitoring. In: Burga, C.A., Kratochwil, A. (eds) Biomonitoring: General and Applied Aspects on Regional and Global Scales. Tasks for vegetation science, vol 35. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9686-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9686-2_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5621-4

  • Online ISBN: 978-94-015-9686-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics