Skip to main content

Reasons, Radical Change and Incommensurability in Science

  • Chapter
Incommensurability and Related Matters

Part of the book series: Boston Studies in the Philosophy of Science ((BSPS,volume 216))

Abstract

A view is presented according to which scientific change, including radical change in the most fundamental scientific conceptions, takes place for reasons. In addition to changes in meanings and substantive claims, such change also often involves alterations in standards, goals, and methods of science. Some of the strengths of this view, as contrasted with some major alternative interpretations of science, are sketched. In particular, the view that some ideas, in some theories or traditions, are “incommensurable” with ideas in at least some other scientific theories or traditions is analyzed critically and reinterpreted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Doppelt, G. (1978). “Kuhn’s Epistemological Relativism: An Interpretation and Defense.” Inquiry 21: 33–86; reprinted in

    Article  Google Scholar 

  • J. Meiland and M. Krausz, eds., (1982), Relativism: Cognitive and Moral, pp. 113–146, Notre Dame: University of Notre Dame Press.

    Google Scholar 

  • Doppelt, G. (1980). “A Reply to Siegel on Kuhnian Relativism.” Inquiry 23: 117–123.

    Article  Google Scholar 

  • Doppelt, G. (1983a). “Laudan’s Pragmatic Alternative to Positivism and Historicism.” Inquiry 24:253–271.

    Article  Google Scholar 

  • Doppelt, G. (1983b). “Relativism and Recent Pragmatic Conceptions of Scientific Rationality.” In N. Rescher, ed., Scientific Explanation and Understanding: Essays on Reasoning and Rationality in Science, pp. 106–142, London: University of Pittsburgh and University Press of America.

    Google Scholar 

  • Doppelt, G. (1986). “Relativism and the Reticulational Model of Scientific Rationality.” Synthese 69: 225–252.

    Article  Google Scholar 

  • Doppelt, G. (1988). “The Philosophical Requirements for an Adequate Conception of Scientific Rationality.” Philosophy of Science 55: 104–133.

    Article  Google Scholar 

  • Doppelt, G. (1990). “The Naturalist Conception of Methodological Standards.” Philosophy of Science 57: 1–19.

    Article  Google Scholar 

  • Laudan, L. (1977). Progress and Its Problems. Berkeley and Los Angeles: University of California Press.

    Google Scholar 

  • Laudan, L. (1981). Science and Hypothesis. Dordrecht: Reidel.

    Book  Google Scholar 

  • Laudan, L. (1984). Science and Values. Berkeley and Los Angeles: University of California Press.

    Google Scholar 

  • Laudan, L. (1987). “Progress and Rationality? The Prospects for Normative Naturalism.” American Philosophical Quarterly 24: 19–31.

    Google Scholar 

  • Leplin, J. (1990). “Renormalizing Naturalism.” Philosophy of Science 57: 20–33.

    Article  Google Scholar 

  • Rosenberg, A. (1990). “Normative Naturalism and the Role of Philosophy.” Philosophy of Science 57: 34–43.

    Article  Google Scholar 

  • Sankey, H. (2000). “Methodological Pluralism, Normative Naturalism and the Realist Aim of Science.” In R. Nola and H. Sankey, eds., After Popper, Kuhn and Feyerabend: Recent Issues in Theories of Scientific Method, pp. 211–229, Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Shapere, D. (1982). “The Concept of Observation in Science and Philosophy.” Philosophy of Science 49: 485–525.

    Article  Google Scholar 

  • Shapere, D. (1984). Reason and the Search for Knowledge. Boston Studies in the Philosophy of Science, Volume 78. Dordrecht: Reidel.

    Google Scholar 

  • Siegel, H. (1980). “Epistemological Relativism In Its Latest Form.” Inquiry 23: 107–117.

    Article  Google Scholar 

  • Siegel, H. (1987). Relativism Refuted. Dordrecht: Reidel.

    Google Scholar 

  • Chap 7

    Google Scholar 

  • Aristotle. (1991). Posterior Analytics. In J. Barnes, ed., The Complete Works of Aristotle, Volume I, pp. 114–166, Princeton: Princeton University Press.

    Google Scholar 

  • Bacon, F. (1939). Novum Organum. In E. Burtt, ed., The English Philosophers from Bacon to Mill, pp. 24–123, New York: Modern Library.

    Google Scholar 

  • Bancali, J., R. Davis Jr., P. Parker, A. Smirnov, and R. Ulrich, eds. (1995). Solar Neutrinos: The First Thirty Years. Reading: Addison-Wesley.

    Google Scholar 

  • Bethe, H. (1939). “Energy Production in Stars.” Physical Review 55: 434–456.

    Article  Google Scholar 

  • Cohen, M. and E. Nagel. (1934). An Introduction to Logic and Scientific Method. New York: Harcourt Brace and Company.

    Google Scholar 

  • Crombie, A. (1962). Robert Grosseteste and the Origins of Experimental Science. Oxford: Oxford University Press.

    Google Scholar 

  • Descartes, R. (1983). Principles of Philosophy. Dordrecht: Reidel.

    Google Scholar 

  • Donald, M. (1991). Origins of the Modern Mind. Cambridge: Harvard University Press.

    Google Scholar 

  • Duhem, P. (1954). The Aim and Structure of Physical Theory. Princeton: Princeton University Press.

    Google Scholar 

  • Eddington, A. (1926). The Internal Constitution of the Stars. Cambridge: Cambridge University Press.

    Google Scholar 

  • Feyerabend, P. (1975). Against Method. London: New Left Books.

    Google Scholar 

  • Galilei, G. (1914). Dialogues Concerning Two New Sciences. New York: MacMillan.

    Google Scholar 

  • Gross, D. and F. Wilczek. (1973). “Ultraviolet Behavior of Non-Abelian Gauge Theories.” Physical Review Letters 30: 1343–1346.

    Article  Google Scholar 

  • Hanson, N. (1958). Patterns of Discovery. Cambridge: Cambridge University Press.

    Google Scholar 

  • Higgs, P. (1964). “Broken Symmetries, Massless Particles and Gauge Fields .” Physical Review Letters 12: 132–133.

    Article  Google Scholar 

  • Hoyningen-Huene, P. (1993). Reconstructing Scientific Revolutions: Thomas S. Kuhn’s Philosophy of Science, trans. A. Levine. Chicago: University of Chicago Press.

    Google Scholar 

  • Kuhn, T. (1970a). “Reflections on My Critics.” In I. Lakatos and A. Musgrave, eds., Criticism and the Growth of Knowledge, pp. 231–278, Cambridge: Cambridge University Press.

    Google Scholar 

  • Kuhn, T. (1970b). The Structure of Scientific Revolutions. 2nd edition. Chicago: University of Chicago Press.

    Google Scholar 

  • Masterman, M. (1970). “The Nature of a Paradigm.” In I. Lakatos and A. Musgrave, eds., Criticism and the Growth of Knowledge, pp. 59–89, Cambridge: Cambridge University Press.

    Google Scholar 

  • Mill, J. (1874). A System of Logic. New York: Harper & Brothers.

    Google Scholar 

  • Miller, D. (1974). “Popper’s Qualitative Theory of Verisimilitude.” British Journal for the Philosophy of Science 25: 166–177.

    Article  Google Scholar 

  • Newton, I. (1952). Opticks. New York: Dover.

    Google Scholar 

  • Newton, I. (1964). The Mathematical Principles of Natural Philosophy. New York: Citadel Press.

    Google Scholar 

  • O’Hear, A. (1982). Karl Popper. London: Routledge & Kegan Paul.

    Google Scholar 

  • Ong, W. (1982). Orality and Literacy. New York: Methuen.

    Book  Google Scholar 

  • Pickering, A. (1984). Constructing Quarks: A Sociological History of Particle Physics. Chicago: University of Chicago Press.

    Google Scholar 

  • Pinch, T. (1980). “Theoreticians and the Production of Experimental Anomaly: The Case of Solar Neutrinos.” In K. Knorr, R. Krohn, and R. Whitley, eds., The Social Process of Scientific Investigation, Sociology of the Sciences, Volume 4, pp. 77–106, Dordrecht: Reidel.

    Chapter  Google Scholar 

  • Pinch, T. (1981). “The Sun Set: The Presentation of Certainty in Scientific Life.” Social Studies of Science 11: 131–158.

    Article  Google Scholar 

  • Pinch, T. (1986). Confronting Nature. Dordrecht: Reidel.

    Book  Google Scholar 

  • Politzer, H. (1973). “Reliable Perturbative Results for Strong Interactions.” Physical Review Letters 30: 1346–1349.

    Article  Google Scholar 

  • Popper, K. (1959). The Logic of Scientific Discovery. New York: Basic Books.

    Google Scholar 

  • Popper, K. (1962). Conjectures and Refutations. New York: Basic Books.

    Google Scholar 

  • Popper, K. (1972). Objective Knowledge. Oxford: Clarendon.

    Google Scholar 

  • Randall, J. (1961). The School of Padua and the Emergence of Modern Science. Padova: Editrice Antenore.

    Google Scholar 

  • Salam, A. (1968). “Weak and Electromagnetic Interactions.” In N. Svartholm, ed., Proceedings of the Eighth Nobel Symposium on Elementary Particle Theory, pp. 367–377, New York: Interscience.

    Google Scholar 

  • Sankey, H. (1994). The Incommensurability Thesis. Aldershot: Avebury.

    Google Scholar 

  • Scheffler, I. (1967). Science and Subjectivity. New York: Bobbs-Merrill.

    Google Scholar 

  • Shapere, D. (1964). “The Structure of Scientific Revolutions.” Philosophical Review, 49, 383–394.

    Article  Google Scholar 

  • Shapere, D. (1971). “The Paradigm Concept.” Science 172: 706–709.

    Google Scholar 

  • Shapere, D. (1982). “The Concept of Observation in Science and Philosophy.” Philosophy of Science 49: 485–525.

    Article  Google Scholar 

  • Shapere, D. (1989). “Evolution and Continuity in Scientific Change.” Philosophy of Science 56: 419–437.

    Article  Google Scholar 

  • Shapere, D. (1990). “The Origin and Nature of Metaphysics.” Philosophical Topics 18: 163–174.

    Article  Google Scholar 

  • Shapere, D. (1991). “The Universe of Modern Science and Its Philosophical Exploration.” In E. Agazzi and A. Cordero, eds., Philosophy and the Origin and Evolution of the Universe, pp. 87–202, Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Shapere, D. (1995). “On the Introduction of New Ideas in Science.” In J. Leplin, ed., The Creation of Ideas in Physics, pp. 189–222, Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Shapere, D. (1996). “The Origin and Nature of Time.” Philosopha Scientiae, Entretiens de la session 1994 de l’Académie Internationale de Philosophie des Sciences 1: 197–220.

    Google Scholar 

  • Shapere, D. (1998). “Incommensurability.” In E. Craig, ed., Routledge Encyclopedia of Philosophy, Volume 4, pp. 732–736, New York: Routledge.

    Google Scholar 

  • Shapere, D. (forthcoming a). “Logic and the Analysis of Science.” To appear in a book, edited by E. Agazzi and P. Weingartner, containing the proceedings of a conference held at Salzburg, Austria, in May, 1999, on “Logic and the Future of Science.”

    Google Scholar 

  • Shapere, D. (forthcoming b). The Rational Dynamics of Science. Oxford: Oxford University Press.

    Google Scholar 

  • Shapere, D. (forthcoming c). “The Ultimate Furniture of the Universe.” Forthcoming in Proceedings of a conference on “Concepts of Nature in Ancient Greece and Modern Science,” San Sebastian, Spain, October 1998.

    Google Scholar 

  • THooft, G. (1971). “Renormalizable Lagrangians for Massive Yong-Mills Fields.” Nuclear Physics B35: 167–188.

    Google Scholar 

  • Toulmin, S. (1953). The Philosophy of Science. London: Hutchinson.

    Google Scholar 

  • Toulmin, S. (1961). Foresight and Understanding. Bloomington: Indiana University Press.

    Google Scholar 

  • Weinberg, S. (1967). “A Model of Leptons.” Physical Review Letters 19: 1264–1266.

    Article  Google Scholar 

  • Weinberg, S. (1972). Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. New York: Wiley.

    Google Scholar 

  • von Weizsäcker, C. (1938). “Element Transformation Inside Stars.” Physikalische Zeitschrift 38:I, 633; II: 633–646.

    Google Scholar 

  • Wittgenstein, L. (1952). Philosophical Investigations. Oxford: Blackwell.

    Google Scholar 

  • Worrall, J. (2000). “The Scope, Limits, and Distinctiveness of the Method of ‘Deduction from the Phenomena’: Some Lessons from Newton’s ‘Demonstration’ in Optics.” British Journal for the Philosophy of Science 51: 45–80.

    Google Scholar 

  • Yang, C. and R. Mills. (1954). “Conservation of Isotopic Spin and Isotopic Gauge Invariance.” Physical Review 96: 191–195.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shapere, D. (2001). Reasons, Radical Change and Incommensurability in Science. In: Hoyningen-Huene, P., Sankey, H. (eds) Incommensurability and Related Matters. Boston Studies in the Philosophy of Science, vol 216. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9680-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9680-0_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5709-9

  • Online ISBN: 978-94-015-9680-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics