Skip to main content

Shape Description and Search for Similar Objects in Image Databases

  • Chapter
State-of-the-Art in Content-Based Image and Video Retrieval

Part of the book series: Computational Imaging and Vision ((CIVI,volume 22))

Abstract

A cognitively motivated similarity measure is presented and its properties are analyzed with respect to retrieval of similar objects in image databases of silhouettes of 2D objects. To reduce influence of digitization noise as well as segmentation errors the shapes are simplified by a novel process of digital curve evolution. To compute our similarity measure, we first establish the best possible correspondence of visual parts (without explicitly computing the visual parts). Then the similarity between corresponding parts is computed and aggregated. We applied our similarity measure to shape matching of object contours in various image databases and compared it to well-known approaches in the literature. The experimental results justify that our shape matching procedure gives an intuitive shape correspondence and is stable with respect to noise distortions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kedem, and J. S. B. Mitchell. An efficiently computable metric for comparing polygonal shapes. IEEE Trans. PAMI, 13: 209–206, 1991.

    Article  Google Scholar 

  2. R. Basri, L. Costa, D. Geiger, and D. Jacobs. Determining the similarity of deformable shapes. In Proc. IEEE Workshop on Physics-Based Modeling in Computer Vision, pages 135–143, 1995.

    Chapter  Google Scholar 

  3. R. Basri, L. Costa, D. Geiger, and D. Jacobs. Determining the similarity of deformable shapes. Vision Research, 38: 2365–2385, 1998.

    Article  Google Scholar 

  4. A. Bengtsson and J.-O. Eklundh. Shape representation by mutliscale contour approximation. IEEE Trans. Pattern Analysis and Machine Intelligence, 13: 85–93, 1991.

    Article  Google Scholar 

  5. J. Beusmans, D.D. Hoffman, and B.M. Bennett. Description of solid shape and its inference from occluding contours. Journal of the Optical Society of America, A. 4: 1155–1167, 1987.

    Google Scholar 

  6. A.M. Bruckstein, G. Shapiro, and C. Shaked. Evolutions of planer polygons. Int. J. of of Pattern Recognition and AI, 9: 991–1014, 1995.

    Article  Google Scholar 

  7. A. Brunn, U. Weidner, and W. Förstner. Model-based 2d-shape recovery. In Proc. of 17. DAGM Conf. on Pattern Recognition (Mustererkennung), pages 260–268, Bielefeld, Springer-Verlag, Berlin, 1995.

    Google Scholar 

  8. H. Freeman. Shape description via the use of critical points. Pattern Recognition, 10: 159–166, 1978.

    Article  MATH  Google Scholar 

  9. D. D. Hoffman and W. A. Richards. Parts of recognition. Cognition, 18: 65–96, 1984.

    Article  Google Scholar 

  10. D. D. Hoffman and M. Singh. Salience of visual parts. Cognition, 63: 2978, 1997.

    Article  Google Scholar 

  11. D. Huttenlocher, G. Klanderman, and W. Rucklidge. Comparing images using the Hausdorff distance. IEEE Trans. PAMI, 15: 850–863, 1993.

    Article  Google Scholar 

  12. J. J. Koenderink and A. J. Doom. The shape of smooth objects and the way contours end. Perception, 11:129–137, 1981.

    Google Scholar 

  13. L. J. Latecki, R.-R. Ghadially, R. Lakämper, and U. Eckhardt. Continuity of the discrete curve evolution. In SPIE and SIAM Conf. on Vision Geometry VIII, volume 3811, pages 212–223, July 1999.

    Google Scholar 

  14. L. J. Latecki and R. Lakämper. Convexity rule for shape decomposition based on discrete contour evolution. Computer Vision and Image Understanding, 73: 441–454, 1999.

    Article  Google Scholar 

  15. L. J. Latecki and R. Lakämper. Polygon evolution by vertex deletion. In M. Nielsen, P. Johansen, O.F. Olsen, and J. Weickert, editors, Scale-Space Theories in Computer Vision. Proc. of Int. Conf. on Scale-Space ’89, volume LNCS 1682, Corfu, Greece, September 1999.

    Google Scholar 

  16. L. J. Latecki, R. Lakämper, and U. Eckhardt http://www.math.unihamburg.de/home/lakaemper/shape.

    Google Scholar 

  17. F. Mokhtarian, S. Abbasi, and J. Kittler. Efficient and robust retrieval by shape content through curvature scale space. In A. W. M. Smeulders and R. Jain, editors, Image Databases and Multi-Media Search, pages 51–58. World Scientific Publishing, Singapore, 1997.

    Google Scholar 

  18. F. Mokhtarian and A. K. Mackworth. A theory of multiscale, curvature-based shape representation for planar curves. IEEE Trans. PAMI, 14: 789805, 1992.

    Google Scholar 

  19. H. Nishida. Matching and recognition of deformed closed contours based on structual transformation models. Pattern Recognition, 31: 1557–1571, 1998.

    Article  Google Scholar 

  20. U. Ramer. An iterative procedure for the polygonal approximation of plane curves. Computer Graphics and Image Processing, 1: 244–256, 1972.

    Article  Google Scholar 

  21. S. Sclaroff. Deformable prototypes for encoding shape categories in image databases. Pattern Recognition, 30: 627–641, 1997.

    Article  Google Scholar 

  22. K. Siddiqi and B. B. Kimia. Parts of visual form: Computational aspects. IEEE Trans. PAMI, 17: 239–251, 1995.

    Article  Google Scholar 

  23. K. Siddiqi, A. Shokoufandeh, S. J. Dickinson, and S. W. Zucker. Shock graphs and shape matching. Int. J. of Computer Vision, 35 (1): 13–32, 1999.

    Article  Google Scholar 

  24. K. Siddiqi, K. J. Tresness, and B. B. Kimia. Parts of visual form: Psychophysical aspects. Perception, 25: 399–424, 1996.

    Article  Google Scholar 

  25. N. Ueda and S. Suzuki. Learning visual models from shape contours using multiscale convex/concave structure matching. IEEE Trans. PAMI, 15: 337–352, 1993.

    Article  Google Scholar 

  26. Y. Uesaka. A new fourier description applicable to open curves. Trans. on IECE Japan A (in Japanese), J67-A: 166–173, 1984.

    Google Scholar 

  27. J. Weickert. A review of nonlinear diffusion filtering. In B. M. ter Haar Romeny, L. Florack, J. Koenderink, and M. Viergever, editors, Scale-Space Theory in Computer Vision, pages 3–28. Springer, Berlin, 1997.

    Google Scholar 

  28. C. T. Zahn and R. Z. Roskies. Fourier descriptors for plane closed curves. IEEE Trans. on Computers, 21: 269–281, 1972.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Latecki, L.J., Lakämper, R. (2001). Shape Description and Search for Similar Objects in Image Databases. In: Veltkamp, R.C., Burkhardt, H., Kriegel, HP. (eds) State-of-the-Art in Content-Based Image and Video Retrieval. Computational Imaging and Vision, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9664-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9664-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5863-8

  • Online ISBN: 978-94-015-9664-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics