Skip to main content

Abstract

The development of skeletal muscle involves proliferation of muscle precursor cells (myoblasts) and subsequent fusion into myotubes or muscle fibers. Therefore, skeletal muscle growth requires both an increase in cell numbers and an increase in muscle fiber size. Natural mutations exist in both cattle and sheep that affect either proliferation of myoblasts or muscle fiber size. These mutations have been retained in certain breeds due to selection. Inactivation of the myostatin locus in mice and in double muscled cattle has identified an important new negative regulator in skeletal muscle growth. Myostatin has been shown to be important for fetal muscle development and in maintenance of muscle mass in adults. Two loci on sheep chromosome 18 (callipyge and ribeye muscle) are linked to enhanced postnatal skeletal muscle growth in the pelvic limbs and loin. However, the actual mechanism responsible for muscle enhancement in these traits is not yet known. These mutations in livestock will provide new insight into the control of growth and body composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aberle ED. Myofiber differentiation in skeletal muscles of newborn runt and normal weight pigs. J Anim Sci 1984; 59:1651–1656.

    PubMed  CAS  Google Scholar 

  • Arthur PF. Double muscling in cattle: a review. Aust J Agric Res 1995; 46:1493–1515.

    Article  Google Scholar 

  • Banks R The meat elite project: establishment and achievements of an elite meat sheep nucleus. Proc Assoc Advance Anim Breed Genet 1997; 12: 598–601.

    Google Scholar 

  • Bennett AM, Tonks NK. Regulation of distinct stages of skeletal muscle differentiation by mitogen-activated protein kinases. Science 1997; 278:1288–1291.

    Article  PubMed  CAS  Google Scholar 

  • Berghmans S, Segers K, Shay T, Georges M, Cockett N, Charlier C. Breakpoint mapping positions the callipyge gene within a 450 kilobase chromosome segment containing the DLK and GTL2 genes. Mamm Genome 2000; (accepted).

    Google Scholar 

  • Bidwell CA, Shay TL, Georges M, Beever JE, Berghmans S, Segers K, Charlier C, Cockett NE. Differential expression of the GTL2 gene within the callipyge region of ovine chromosome 18. 2000: (in preparation).

    Google Scholar 

  • Bischoff R. The satellite cell and muscle regeneration. In Myogenesis. Ed. Engel A G, Franszini-Armstrong C. New York, McGraw Hill, pp 97–118. 1994.

    Google Scholar 

  • Buoananno A, Rosenthal N. Molecular control of muscle diversity and plasticity. Devel Genet 1996: 19:95–107.

    Article  Google Scholar 

  • Campion DR, Richardson RL, Reagan JO, Kraeling RR. Changes in the satellite cell population during postnatal growth of pig skeletal muscle. J Anim Sci 1981; 52:1014–1018.

    PubMed  CAS  Google Scholar 

  • Cappucio I, Marchitelli C, Serrachhioli A, Nardone A, Filippini F, Ajmone-Marsan P, Valentini A. A G-T transversion introduces a stop codon at the mh locus in hypertrophic Marchigiana beef subjects. Proc., XXVIth Intern. Conf. Anim. Genet., Auckland, New Zealand p. 78. 1998.

    Google Scholar 

  • Carpenter CE, Cockett NE. Histology of longissimus muscle from 2-week-old and 8-week-old normal and callipyge lambs. Can J Anim Sci 2000; (in press).

    Google Scholar 

  • Carpenter CE, Rice OD, Cockett NE, Snowder GD. Histology and composition of muscles from normal and callipyge lambs. J Anim Sci 1996; 74:388–393.

    PubMed  CAS  Google Scholar 

  • Carpenter, CE, Solomon MB, Snowder GD, Cockett NE, Busboom JR. Effects of electrical stimulation and conditioning, calcium chloride injection and aging on the acceptability of callipyge and normal lamb. Sheep Goat Res J 1997; 13:127–134.

    Google Scholar 

  • Casas E, Keele JW, Fahrenkrug SC, Smith TPL, Cundiff LV, Stone RT. Quantitative analysis of birth, weaning, and yearling weights and calving difficulty in Piedmontese crossbreds segregating an inactive myostatin allele. J Anim Sci 1999; 77:1686–1692.

    PubMed  CAS  Google Scholar 

  • Casas E, Keele JW, Shackelford SD, Koohmaraie M, Sonstegard TS, Smith TPL, Kappes SM, Stone RT. Association of the muscle hypertrophy locus with carcass traits in beef cattle. J Anim Sci 1998; 76:468–473.

    PubMed  CAS  Google Scholar 

  • Charlier C, Coppieters W, Farnir F, Grobet L, Leroy PL, Michaux C, Mni M, Schwers A, Vanmanshoven P, Hanset R, Georges M. The mh gene causing double-muscling in cattle maps to bovine chromosome 2. Mamm. Genome 1995 6:788–792.

    Article  PubMed  CAS  Google Scholar 

  • Charlier C, Leroy PL. Comparison of muscular fibers of double muscled Texel and Bleu du Maine. Proc., 47 th EAAP, Lillehammer, Norway, Session S3.20. 1996.

    Google Scholar 

  • Cockett NE, Jackson SP, Shay TL, Nielsen D, Moore SS, Steele MR, Barendse W, Green RD, Georges M. Chromosomal localization of the callipyge gene in sheep. Proc Natl Acad Sci USA 1994; 91:3019–3023.

    Article  PubMed  CAS  Google Scholar 

  • Cockett NE, Jackson SP, Shay TL, Farnir F, Berghmans S, Snowder GD, Nielsen D, Georges M. Polar overdominance at the ovine callipyge locus. Science 1996; 273:236–238.

    Article  PubMed  CAS  Google Scholar 

  • Cooper RN, Tajbakhsh S, Mouly V, Cossu G, Buckingham M, Butler-Browne GS. In vivo satellite cell activation via myf-5 and MyoD in regenerating mouse skeletal muscle. J Cell Science 1999; 112:2895–2901.

    PubMed  CAS  Google Scholar 

  • Cossu G, Borello U. Wnt signaling and the activation of myogenesis in mammals. EMBO J 1999; 18:6867–6872.

    Article  PubMed  CAS  Google Scholar 

  • Duckett SK, Klein TA, Dodson MV, Snowder GD. Tenderness of normal and callipyge lamb aged fresh or after freezing. Meat Sci 1998; 49:19–26.

    Article  PubMed  CAS  Google Scholar 

  • Dunner S, Charlier C, Farnir F, Brouwers B, Canon J, Georges M. Towards interbreed IBD fine mapping of the mh locus: double-muscling in the Asturiana de los Valles breed involves the same locus as the Belgian Blue cattle breed. Mamm Genome 1997; 8:430–435.

    Article  PubMed  CAS  Google Scholar 

  • Dwyer CM, Fletcher JM, Stickland NC. Muscle cellularity and postnatal growth in the pig. J Anim Sci 1993; 71:3339–3343.

    PubMed  CAS  Google Scholar 

  • Dwyer CM, Stickland NC, Fletcher JM. The influence of maternal nutrition on muscle fiber number development in the porcine fetus and on subsequent postnatal growth. J Anim Sci 1994; 72:911–917.

    PubMed  CAS  Google Scholar 

  • Fahrenkrug SC, Casas E, Keele JW, Smith TPL. Technical note: Direct genotyping of the doublemuscling locus (mh) in Piedmontese and Belgian Blue cattle by fluorescent PCR. J Anim Sci 1999; 77:2028–2030.

    PubMed  CAS  Google Scholar 

  • Freking BA, Keele JW, Beattie CW, Kappes SM, Smith TPL, Sonstegard TS, Nielsen MK, Leymaster KA. Evaluation of the ovine callipyge locus: I. Relative chromosomal position and gene action. J Anim Sci 1998; 76:2062–2071.

    PubMed  CAS  Google Scholar 

  • Florini JR, Ewton DZ, Magri KA. Hormones, growth factors, and myogenic differentiation. Ann Rev Physiol 1991; 53: 201–216.

    Article  CAS  Google Scholar 

  • Gonzalez-Cadavid NF, Taylor WE, Yarasheski K, Sinha-Hikim I, Ma K, Ezzat S, Shen R, Lalani R, Asa S, Mamita M, Arver S, Bhasin S. Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proc Natl Acad Sci USA 1998: 95 :1493 8–14943.

    Google Scholar 

  • Grobet L, Martin L J R, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massabanda J, Fries R, Hanset R, Georges M. A deletion in the bovine myostatin gene causes the double muscled phenotype in cattle. Nature Genetics 1997; 17:71–74.

    Article  PubMed  CAS  Google Scholar 

  • Grobet L, Poncelet D, Martin LJR, Brouwers B, Pirottin D, Michaux C, Menissier F, Zanotti M, Dunner S, Georges M. Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle. Mamm Genome 1998; 9:210–213.

    Article  PubMed  CAS  Google Scholar 

  • Handel SE, Stickland NC. Muscle cellularity and birthweight. J Anim Prod 1987; 44:311–317.

    Article  Google Scholar 

  • Jackson KJ, Mi T, Goodell MA. Hematopoetic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci USA 1999; 96:14482–14486.

    Article  PubMed  CAS  Google Scholar 

  • Jackson SP, Green RD, Miller NF. Phenotypic characterization of Rambouillet sheep expressing the callipyge gene: I. Inheritance of the condition and production characteristics. J Anim Sci 1997a; 75 : 14–21.

    PubMed  CAS  Google Scholar 

  • Jackson SP, Miller MF, Green RD. Phenotypic characterization of Rambouillet sheep expressing the callipyge gene: II. Carcass characteristics and retail yield. J Anim Sci 1997b; 75:125–132.

    PubMed  CAS  Google Scholar 

  • Jackson SP, Miller MF, Green RD. Phenotypic characterization of Rambouillet sheep expressing the callipyge gene: III. Muscle weights and muscle weight distribution. J Anim Sci 1997c; 75:133–139.

    PubMed  CAS  Google Scholar 

  • Ji S, Losinski RL, Cornelius SG, Frank GR, Willis GM, Gerrard DE, Depreux FFS, Spurlock ME. Myostatin expression in porcine tissues: tissue specificity and developmental and postnatal expression. Am J Physiol 1998; 275: R1265–R1273.

    Google Scholar 

  • Kambadur R, Sharma M, Smith TPL, Bass JJ. Mutations in myostatin (GDF8) in double muscled Belgian Blue cattle. Genome Res 1997; 7:910–916.

    PubMed  CAS  Google Scholar 

  • Karim L, Coppieters W, Grobet L, Valentini A, Georges M. Convenient genotyping of six myostatin mutations causing double-muscling in cattle using a multiplex olignucleotide ligation assay. Anim Genet 2000 (in press).

    Google Scholar 

  • Kerth CR, Jackson SP, Miller MF, Ramsey CB. Physiological and sensory characteristics ot callipyge sheep. Texas Tech U. Res Rep., Tech Rep. No. T-5–356, pp. 31–33. 1995.

    Google Scholar 

  • Koohmaraie M, Shackelford SD, Wheeler TL, Lonergan SM, Doumit ME. A muscle hypertrophy condition in lamb (callipyge): characterization of effects on muscle growth and meat quality traits. J Anim Sci 1995; 73:3596–3607.

    PubMed  CAS  Google Scholar 

  • Koohmaraie M, Shackelford SD, Wheeler TL. Effect of prerigor freezing and postrigor calcium chloride injection on the tenderness of callipyge longissimus. J Anim Sci 1998; 76:1427–1432.

    PubMed  CAS  Google Scholar 

  • Lalani R, Bhasin S, Byhower F, Tarnuzzer R, Grant M, Shen R, Asa S, Ezzat S, Gonzalez-Cadavida NF. Myostatin and insulin-like growth factor -1 and -2 expression in the muscle of rats exposed to the microgravity environment of the neurolab spaceshuttle flight. J Endocrinol 2000; 167:417–428.

    Article  PubMed  CAS  Google Scholar 

  • Lorenzen CL, Koohmaraie M, Shackelford SD, Jahoor F, Freetly HC, Wheeler TL, Savell JW, Fiorotto ML. Protein kinetics in callipyge lambs. J Anim Sci 2000; 78:78–87.

    PubMed  CAS  Google Scholar 

  • Marcq F, El Barkouki S, Elsen JM, Grobet L, Royo L, Leroy PL, Georges M. Investigating the role of myostatin in the determinism of double muscling characterizing Belgian Texel sheep. Proc XXVIth Intern Conf Anim Genet Auckland New Zealand p. 75. 1998.

    Google Scholar 

  • Marcq F, Elsen J-M, Marot V, Bouix J, Coppieters W, Eychenne F, Laville E, Nezer C, Sayd T, Bibe B, Georges M, Leroy P. Mapping quantitative trait loci causing the muscular hvnertrophv of Belgian Texel sheep. Proc 50 th> EAAP Zurich Switzerland. 1999.

    Google Scholar 

  • Maroto M, Reshef R, Munsterberg AE, Koester S, Goulding M, Lassar AB. Ectopic Pax-3 activates MyoD and Myf-5 expression in embryonic mesoderm and neural tissue. Cell 1999; 89:139–148.

    Article  Google Scholar 

  • Martin JF, Li L, Olson EN. Repression of myogenin function by TGF-⃞ 1 is targeted at the basic helx-loop-helix motif and is independent of E2A products. J Biol Chem 1992; 267:10956–10960.

    PubMed  CAS  Google Scholar 

  • McEwan JC, Gerard EM, Jopson NB, Nicoll GB, Greer GJ, Dodds KG, Bain WE, Burkin HR, Lord EA, Broad TE. Localization of a QTL for rib-eye muscling on OOV 18. Proc XXVIth Intern Conf Anim Genet Auckland New Zealand. p. 101. 1998.

    Google Scholar 

  • McEwan JC, Broad TE, Jopson NB, Robertson TM, Glass BC, Burkin Hb, Gerard E M, Lord Ea, Greer GJ, Bain WE, Nicoll GB. Rib-eye muscling (REM) locus in sheep: Phenotypic effects and comparative genome localization. Proc XXVIth Intern Conf Anim Genet Minneapolis MN USA. p. 25. 2000.

    Google Scholar 

  • McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA 1997; 94:12457–12461.

    Article  PubMed  CAS  Google Scholar 

  • McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-ß superfamily member. Nature 1997; 387:83–90.

    Article  PubMed  CAS  Google Scholar 

  • Menissier F. Present state of knowledge about the genetic determination of muscular hypertrophy or the double muscled trait in cattle. In: Current Topics in Veterinary Medicine and Animal Science. Vol. 16: Muscle Hypertrophy of Genetic Origin and Its Use to Improve Beef Production. Ed. King and Menissier, Martinus Nijhoff, p. 397–428. 1982.

    Google Scholar 

  • Miller LT, Garwood VA, Judge MH. Factors affecting porcine muscle fiber type, diameter and number. J Anim Sci 1975; 41:66.

    Google Scholar 

  • Nicoll GB, Burkin HR, Broad TE, Jopson NB, Greer GJ, Bain WE, Wright CS, Dodds KG, Fennessy PF, McEwan JC. Genetic linkage of microsatellite markers to the Carwell locus for rib-eye muscling in sheep. Proc VI World Conf on Genetics Applied to Lvst Prod, Armidale, Australia. 26:529. 1998.

    Google Scholar 

  • Ruiz-Gomez M, Coutts N, Price A, Taylor MV, Bate M. Drosophila dumbfounded: a myoblast attractant essential for fusion. Cell 2000; 102:189–198.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt J, Matteson PG, Jones BK, Guan X-J, Tilghman SM. The Dlk1 and Gtl2 genes are linked and reciprocally imprinted. Genes and Develop 2000; 14:1997–2002.

    CAS  Google Scholar 

  • Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA. Pax7 is required for the specification of myogenic satellite cells. Cell 2000; 102:777–786.

    Article  PubMed  CAS  Google Scholar 

  • Shay TL, Berghmans S, Segers K, Meyers S, Beever JE, Womack JE, Georges M, Charlier C, Cockett NE. Fine-mapping and construction of a bovine contig spanning the ovine callipyge locus. Mamm Genome 2000; (accepted).

    Google Scholar 

  • Solomon MB, Carpenter CE, Snowder GD, Cockett NE. Tenderizing callipyge lamb with the hydrodyne process and electrical stimulation. J Muscle Foods 1998; 9:305–311.

    Article  Google Scholar 

  • Stockdale FE. Myogenic cell lineages. Dev Biol 1992; 154:284–298.

    Article  PubMed  CAS  Google Scholar 

  • Segers K, Vaiman D, Berghmans S, Shay T, Beever J, Cockett N, Georges M, Charlier C. Construction and characterization of an ovine BAC contig spanning the callipyge locus. Anim Genet 2000; (in press).

    Google Scholar 

  • Tajbakhsh S, Rocancourt D, Cossu G, Buckingham M. Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 1999; 89:127–138.

    Article  Google Scholar 

  • Walsh K, Perlman H. Cell cycle exit upon myogenic differentiation. Curr Opin Genet Dev 1997; 7: 5 97–602.

    Article  Google Scholar 

  • Wehling M, Cai B, Tidball JG. Modulation of myostatin expression during modified muscle use. FASEB J 2000; 14:103–110.

    PubMed  CAS  Google Scholar 

  • Weintraub H. The MyoD family and myogenesis: Redundancy, networks and thresholds. Cell 1993; 75:1241–1244.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cockett, N.E., Bidwell, C.A. (2001). Muscle Enhanced Traits in Cattle and Sheep. In: Owen, J.B., Treasure, J.L., Collier, D.A. (eds) Animal Models — Disorders of Eating Behaviour and Body Composition. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9662-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9662-6_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5743-3

  • Online ISBN: 978-94-015-9662-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics