Skip to main content

Cold Acclimation and Deacclimation of Shoots and Roots of Conifer Seedlings

  • Chapter

Part of the book series: Tree Physiology ((TREE,volume 1))

Abstract

Conifers that are adapted to grow in regions where marked annual temperature changes are observed have developed physiological mechanisms that enable them to alternate their growth and rest periods in phase with the climate, so they exhibit a strong periodicity in cold hardiness. Cold acclimation is the transition from a non-hardy state to a hardy one. It is a complex physiological process that enables plant tissues to become tolerant to extracellular freezing, duration of cold and also to temporal thawing (Levitt 1980). The annual growth rhythm of trees and the ability to cold harden are determined genetically (Weiser 1970) but are controlled by environmental cues (Levitt 1980).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alazard, P. 1986. Frost resistance of maritime pine. Ann. Rech. Sylvic., AFOCEL, France. pp. 165–217.

    Google Scholar 

  • Aldhous, J.R. 1972. Nursery practices. UK For. Comm. Bull. No. 43.

    Google Scholar 

  • Antonyuk, E.D. 1992. The forest resistance of conifer plants grown in containers. Lesn. Khoz. 1: 43–44.

    Google Scholar 

  • Arnott, J.T., Grossnickle, S.C., Puttonen, P., Mitchell, A.K., and Folk, R.S. 1993. Influence of nursery culture on growth, cold hardiness, and drought resistance of yellow cypress. Can. J. For. Res. 23: 2537–2547.

    Article  Google Scholar 

  • Aronsson, A. 1975. Influence of photo and thermoperiod on the initial stages of frost hardening and dehardening of phytotron-grown seedlings of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.). Stud. For. Suec. 128: 1–20.

    Google Scholar 

  • Aronsson, A. 1980. Frost hardiness in Scots pine (Pinus silvestris L.). II. Hardiness during winter and spring in young trees of different mineral nutrient status. Stud. For. Suec. 155: 1–27.

    Google Scholar 

  • Aronsson, A., and Eliasson, L. 1970. Frost hardiness in Scots pine (Pinus silvestris L.). 1. Conditions for test on hardy plant tissues and for evaluation of injuries by conductivity measurements. Stud. For. Suec. 77: 1–29.

    Google Scholar 

  • Bauer, H., Harrasser, J., Bendetta, G., and Larcher, W. 1971. Annual course of heat and cold resistance of young trees in relation to their seasonal growth. Ber. Dtsch. Bot. Ges. 84: 561–570.

    Google Scholar 

  • Beck, E., Hansen, J., Heim, R., Schäfer, C., Vogg, G., Leborgne, N., Teulières, C., and Boudet, A.M. 1995. Cold hardening and dehardening of evergreen trees. In EUROSILVA: Contribution to forest tree physiology. Final Workshop, Eurosilva Research Programme, 7–10 Nov. 1994, Dourdan, France. Les colloques No. 76. Edited by H. Sandermann, Jr. and M. Bonnet-Masimbert. Inst. Nat. Rech. Agron., Paris. pp. 171–193.

    Google Scholar 

  • Benzian, B. 1966. Effects of nitrogen and potassium concentrations in conifer seedlings on frost damage. Rothamsted Exp. Stn. Rep. 1965–1966: 58–59.

    Google Scholar 

  • Benzian, B., Brown, R.M., and Freeman, S.C.R. 1974. Effect of late-season top-dressings of N (and K) applied to conifer transplants in the nursery on their survival and growth on British forest sites. Forestry, 47: 153–184.

    Google Scholar 

  • Berrang, P.C., and Steiner, K.C. 1986. Seasonal changes in the cold tolerance of pitch pine. Can. J. For. Res. 16: 408–410.

    Article  Google Scholar 

  • Beuker, E., Valtonen, E., and Repo, T. 1998. Seasonal variation in the frost hardiness of Scots pine and Norway spruce in old provenance experiments in Finland. For. Ecol. Manage. 107: 87–98.

    Article  Google Scholar 

  • Bigras, F.J. 1996. Conifer bud dormancy and stress resistance: a forestry perspective. In Plant dormancy: physiology, biochemistry and molecular biology. Edited by G.A. Lang. CAB International, Wallingford, UK. pp. 171–192.

    Google Scholar 

  • Bigras, F.J. 1997. Root cold tolerance of black spruce seedlings: viability tests in relation to survival and regrowth. Tree Physiol. 17: 311–318.

    Article  PubMed  Google Scholar 

  • Bigras, F.J., and Calmé, S. 1994. Viability tests for estimating root cold tolerance of black spruce seedlings. Can. J. For. Res. 24: 1039–1048.

    Article  Google Scholar 

  • Bigras, F.J., and D’Aoust, A.L. 1992. Hardening and dehardening of shoots and roots of containerized black spruce and white spruce seedlings under short and long days. Can. J. For. Res. 22: 388–396.

    Article  Google Scholar 

  • Bigras, F.J., and D’Aoust, A.L. 1993. Influence of photoperiod on shoot and root frost tolerance and bud phenology of white spruce seedlings (Picea glauca). Can. J. For. Res. 23: 219–228.

    Article  Google Scholar 

  • Bigras, F.J., and Margolis, H.A. 1997. Shoot and root sensitivity of containerized black spruce, white spruce and jack pine seedlings to late fall freezing. New For. 13: 29–49.

    Article  Google Scholar 

  • Bigras, F.J., Paquin, R., Rioux, J.A., and Therrien, H.P. 1989a. Influence de la photopériode et de la température sur l’évolution de la tolérance au gel, de la croissance et de la teneur en eau, sucres, amidon et proline des rameaux et des racines du genévrier (Juniperus chinensis L. Pfitzerana’). Can. J. Plant Sci. 69: 305–316.

    Article  Google Scholar 

  • Bigras, F.J., Rioux, J.-A., Paquin, R., and Therrien, H.-P. 1989b. Influence de la prolongation de la fertilisation à l’automne sur la tolérance au gel et sur la croissance printanière du Juniperus chinensis Pfitzerana’ cultivé en contenants. Phytoprotection, 70: 75–84.

    Google Scholar 

  • Bigras, F.J., Gonzalez, A., D’Aoust, A.L., and Hébert, C. 1996. Frost hardiness, bud phenology and growth of containerized Picea mariana seedlings grown at three nitrogen levels and three temperature regimes. New For. 12: 243–259.

    Google Scholar 

  • Binnie, S.C., Grossnickle, S.C., and Roberts, D.R. 1994. Fall acclimation patterns of interior seedlings and their relationship to changes in vegetative storage proteins. Tree Physiol. 14: 1107–1120.

    Article  PubMed  CAS  Google Scholar 

  • Blake, J., Zaerr, J., and Hee, S. 1979. Controlled moisture stress to improve cold hardiness and morphology of Douglas-fir seedlings. For. Sci. 25: 576–582.

    Google Scholar 

  • Burr, K. 1990. The target seedling concepts: bud dormancy and cold-hardiness. In Target seedling symposium. Proceedings of the Combined Meeting of the Western Forest Nursery Associations, 13–17 Aug., Roseburg, Oregon. Edited by R. Rose, S.J. Campbell, and T.D. Landis. USDA For. Serv. Gen. Tech. Rep. RM-200. pp. 79–90.

    Google Scholar 

  • Burr, K.E., and Tinus, R.W. 1988. Effect of the timing of cold storage on cold hardiness and root growth potential of Douglas-fir. In Proceedings of the Combined Meeting of the Western Forest Nursery Associations, 8–11 Aug., Vernon, B.C. Edited by T.D. Landis. USDA For. Serv. Gen. Tech. Rep. RM-167. pp. 133–138.

    Google Scholar 

  • Burr, K.E., Tinus, R.W., Wallner, S.J., and King, R.M. 1989. Relationships among cold hardiness, root growth potential and bud dormancy in three conifers. Tree Physiol. 5: 291–306.

    Article  PubMed  Google Scholar 

  • Calmé, S., Margolis, H.A., and Bigras, F.J. 1993. Influence of cultural practices on the relationship between frost tolerance and water content of containerized black spruce, white spruce, and jack pine seedlings. Can. J. For. Res. 23: 503–511.

    Article  Google Scholar 

  • Cannell, M.G. R., and Sheppard, L.J. 1982. Seasonal changes in the frost hardiness of provenances of Picea sitchensis in Scotland. Forestry, 55: 137–153.

    Article  Google Scholar 

  • Cannell, M.G.R., and Smith, R.I. 1983. Thermal time, chill days and prediction of budburst in Picea sitchensis. J. Appl. Ecol. 20: 951–963.

    Article  Google Scholar 

  • Christersson, L. 1971. Frost damage resulting from ice crystal formation in seedlings of spruce and pine. Physiol. Plant. 25: 273–278.

    Article  Google Scholar 

  • Christersson, L. 1973. The effect of inorganic nutrients on water economy and hardiness of conifers. I. The effect of varying potassium, calcium and magnesium levels on water content, transpiration rate and the initial phase of development of frost hardiness of Pinus silvestris L. seedlings. Stud. For. Suec. 103: 1–26.

    Google Scholar 

  • Christersson, L. 1975. Frost-hardiness development in Pinus silvestris L. seedlings at different levels of potassium and calcium fertilization. Can. J. For. Res. 5: 738–740.

    Article  CAS  Google Scholar 

  • Christersson, L. 1978. The influence of photoperiod and temperature on the development of frost hardiness in seedlings of Pinus silvestris and Picea abies. Physiol. Plant. 44: 288294.

    Google Scholar 

  • Coleman, M.D., Hinckley, T.M., McNaughton, G., and Smit, B.A. 1992. Root cold hardiness and native distribution of subalpine conifers. Can. J. For. Res. 22: 932–938.

    Article  Google Scholar 

  • Colombo, S.J. 1990. Bud dormancy status, frost hardiness, shoot moisture content, and readiness of black spruce container seedlings for frozen storage. J. Am. Soc. Hortic. Sci. 115: 302–307.

    Google Scholar 

  • Colombo, S.J. 1994. Timing of cold temperature exposure affects root and shoot frost hardiness of Picea mariana container seedlings. Scand. J. For. Res. 9: 52–59.

    Article  Google Scholar 

  • Colombo, S.J., and Raitanen, E.M. 1991. Frost hardening in white cedar container seedlings exposed to intermittent short days and cold temperatures. For. Chron. 67: 542–544.

    Google Scholar 

  • Colombo, S.J., and Raitanen, E.M. 1993. Frost hardening in first-year eastern larch (Larix laricina) container seedlings. New For. 7: 55–61.

    Article  Google Scholar 

  • Colombo, S.J., and Smith, W.A. 1987. Response of containerized black spruce and jack pine seedlings to fertilization rate and growing medium. Ont. Minist. Nat. Res. For. Res. Rep. No. 116.

    Google Scholar 

  • Colombo, S.J., Zhao, S., and Blumwald, E. 1995. Frost hardiness gradients in shoots and roots of Picea mariana seedlings. Scand. J. For. Res. 10: 32–36.

    Article  Google Scholar 

  • Coultas, L. 1965. The influence of fertilizers on the nutrition and performance of certain container grown evergreens. Ph.D. thesis. University of Minnesota, St. Paul, MN, USA.

    Google Scholar 

  • Coursolle, C., Bigras, F.J., and Margolis, H.A. 1998. Frost tolerance and hardening capacity during the germination and early developmental stages of four white spruce (Picea glauca) provenances. Can. J. Bot. 76: 122–129.

    Article  Google Scholar 

  • Cremer, K.W. 1985. Effects of freezing the roots and shoots of seedlings of Pinus radiata and three Eucalyptus species. Aust. For. Res. 15: 253–261.

    Google Scholar 

  • D’Aoust, Al., and Cameron, S.I. 1982. The effect of dormancy induction, low temperatures and moisture stress on cold hardening of containerized black spruce seedlings. In Proceedings of the Canadian Containerized Tree Seedling Symposium, 14–16 Sept. 1981, Toronto, Ontario. Edited by J.B. Scarratt, C. Glerum, and C.A. Plexman. Can. For. Serv. Gt. Lakes For. Cent. Inf. Rep. O-P-10. pp. 153–161.

    Google Scholar 

  • Davradou, M., and Hawkins, B.J. 1998. Effects of plantation location and population on the seasonal freezing tolerance of yellow-cedar (Chamaecyparis nootkatensis) stecklings. New For. 15: 77–87.

    Article  Google Scholar 

  • Day, W.R. 1958. Variations in susceptibility of European larch of differing seed origin in Scotland to injury by experimental freezing. Scott. For. 12: 143–146.

    Google Scholar 

  • DeHayes, D.H., Ingle, M.A., and Waite, C.E. 1989. Nitrogen fertilization enhances cold tolerance of red spruce seedlings. Can. J. For. Res. 19: 1037–1043.

    Article  Google Scholar 

  • DeHayes, D.H., Waite, C.E., and Ingle, M.A. 1990. Storage temperature and duration influence cold tolerance of red spruce foliage. For. Sci. 36: 1153–1158.

    Google Scholar 

  • Dietrichson, J. 1961. Breeding for frost resistance. Silvae Genet. 10: 172–179.

    Google Scholar 

  • Dormling, I. 1990. Temperatur, Ijus och odlingstidens längd päverkar plantornas möjlighet att härdas. Skogsfakta, Skogsvetenskapliga Fakulteten, Sveriges Lantbruksuniversitet, Biologi-och-Skogsskotsel. 14: 15–19.

    Google Scholar 

  • Dormling, I. 1993. Bud dormancy, frost hardiness, and frost drought in seedlings of Pinus sylvestris and Picea abies. In Advances in plant cold hardiness. Edited by P.H. Li and L. Christersson. CRC Press, Boca Raton, FL. pp. 285–298.

    Google Scholar 

  • Edwards, G.S., Pier, P.A., and Kelly, J.M. 1990. Influence of ozone and soil magnesium status on the cold hardiness of loblolly pine (Pinus taeda L.) seedlings. New Phytol. 115: 157–164.

    Article  CAS  Google Scholar 

  • Eiche, V. 1966. Cold damage and plant mortality in experimental provenance plantations with Scots pine in northern Sweden. Stud. For. Suec. 36: 1–218.

    Google Scholar 

  • Fraser, J.W., and Farrar, J.L. 1957. Frost hardiness of white spruce and red pine seedlings in relation to soil moisture. For. Branch Can. Tech. Note No. 59.

    Google Scholar 

  • Gleason, J.F., Duryea, M., Rose, R., and Atkinson, M. 1990. Nursery and field fertilization of 2+0 ponderosa pine seedlings: the effect on morphology, physiology, and field performance. Can. J. For. Res. 20: 1766–1772.

    Article  Google Scholar 

  • Glerum, C. 1973. Annual trends in frost hardiness and electrical impedance for seven coniferous species. Can. J. Plant Sci. 53: 881–889.

    Article  Google Scholar 

  • Glerum, C. 1985. Frost hardiness of coniferous seedlings: principles and applications. In Evaluating seedling quality: principles, procedures, and predictive abilities of major tests. Edited by M.L. Duryea. Forest Research Laboratory, Oregon State University, Corvallis, OR, USA. pp. 107–123.

    Google Scholar 

  • Gouin, F. 1977. Root-killing temperatures. Am. Nurseryman. 146: 56–57.

    Google Scholar 

  • Green, J.L., and Fuchigami, L.H. 1985. Overwintering container-grown plants. Ornamentals Northwest, 9: 10–23.

    Google Scholar 

  • Green, L.M., and Warrington, I.J. 1978. Assessment of frost damage in radiata pine seedlings using the diffusate electroconductivity technique. N.Z. J. For. Sci. 8: 344–350.

    Google Scholar 

  • Greer, D.H. 1983. Electrical impedance and its relationship to frost hardiness in Pinus radiata. N.Z. J. For. Sci. 13: 80–86.

    Google Scholar 

  • Greer, D.H., and Warrington, I.L. 1982. Effect of photoperiod, night temperature, and frost incidence on development of frost hardiness in Pinus radiata. Aust. J. Plant Physiol. 9: 333–342.

    Article  Google Scholar 

  • Greer, D.H., Stanley, C.J., and Warrington, I.J. 1989. Photoperiod control of the initial phase of frost hardiness development in Pinus radiata. Plant Cell Environ. 12: 661–668.

    Article  Google Scholar 

  • Grill, D., Pfeifhofer, H., and Tschulik, A. 1987. Untersuchungen über die jahreszeitlichen Schwankungen von Nadelinhaltsstoffen unter besonderer Berücksichtigung von Frosthärtefaktoren. Phyton, 27: 221–240.

    CAS  Google Scholar 

  • Grossnickle, S.C. 1989. Shoot phenology and water relations of Picea glauca. Can. J. For. Res. 19: 1287–1290.

    Article  Google Scholar 

  • Grossnickle, S.C. 1992. Relationship between freezing tolerance and shoot water relations of western red cedar. Tree Physiol. 11: 229–240.

    Article  PubMed  Google Scholar 

  • Hansen, J.M. 1992. Effects of nutritional factors on frost hardening in Larix leptolepis (Sieb Zucc.) Gord. Scand. J. For. Res. 7: 183–192.

    Article  Google Scholar 

  • Hansen, J.M., and Eriksen, E.N. 1993. The effect of photosynthetic photon flux density on development of frost hardiness in top and roots of Larix leptolepis seedlings. Scand. J. For. Res. 8: 204–212.

    Article  Google Scholar 

  • Havis, J.R. 1976. Root hardiness of woody ornamentals. HortScience, 11: 385–386.

    Google Scholar 

  • Hawkins, B.J. 1993. Photoperiod and night frost influence the frost hardiness of Chamaecyparis nootkatensis clones. Can. J. For. Res. 23: 1408–1414.

    Article  Google Scholar 

  • Hawkins, B.J., and McDonald, S.E. 1993. Photoperiod influences dehardening of Chamaecyparis nootkatensis seedlings. Can. J. For. Res. 23: 2452–2454.

    Article  Google Scholar 

  • Hawkins, B.J., Davradou, M., Pier, D., and Shortt, R. 1995. Frost hardiness and winter photosynthesis of Thuja plicata and Pseudotsuga menziesii seedlings grown at three rates of nitrogen and phosphorus supply. Can. J. For. Res. 25: 18–28.

    Article  Google Scholar 

  • Hawkins, B.J., Henry, G., and Whittington, J. 1996. Frost hardiness of Thuja plicata and Pseudotsuga menziesii seedlings when nutrient supply varies with season. Can. J. For. Res. 26: 1509–1513.

    Article  Google Scholar 

  • Hellergren, J. 1981. Frost hardiness development in Pinus sylvestris seedlings in response to fertilization. Physiol. Plant. 52: 297–301.

    Article  CAS  Google Scholar 

  • Holzer, K. 1969. Cold resistance in spruce. In Proceedings of the 2nd FAO-IUFRO World

    Google Scholar 

  • Consultation on Forest Tree Breeding, 7–16 Aug., Washington, D.C., USA. pp. 597–613. Hurme, P., Repo, T., Savolainen, O., and Pääkkönen, T. 1997. Climatic adaptation of bud set and frost hardiness in Scots pine (Pinus sylvestris). Can. J. For. Res. 27: 716–723.

    Article  Google Scholar 

  • Jensen, K.F., and Gatherum, G.E. 1965. Effects of temperature, photoperiod, and provenance on growth and development of Scotch pine seedlings. For. Sci. 11: 189–199.

    Google Scholar 

  • Jian, J. 1992. Monitoring the development of cold tolerance in container-grown red pine and black spruce seedlings. M.Sc. thesis. University of Maine, Orono, ME, USA.

    Google Scholar 

  • Jian, J.H., and Livingston, W.H. 1992. Evaluating percent weight loss for measuring root cold hardiness of container-grown black spruce. Phytopathology, 82: 244.

    Google Scholar 

  • Johnson, J.R., and Havis, J.R. 1977. Photoperiod and temperature effects on root cold acclimation. J. Am. Soc. Hortic. Sci. 102: 306–308.

    Google Scholar 

  • Jonsson, A., Eriksson, G., Dormling, I., and Ifver, J. 1981. Studies on frost hardiness of Pinus contorta Dougl. seedlings grown in climate chambers. Stud. For. Suec. 157: 1–47.

    Google Scholar 

  • Kandler, O., Dover, C., and Ziegler, P. 1979. Kälteresistenz der Fichte I. Steuerung von Kälteresistenz, Kohlehydrat-and Proteinstoffwechsel durch Photoperiode and Temperatur. Ber. Dtsch. Bot. Ges. 92: 225–241.

    Google Scholar 

  • Kawana, A., Nakahara, M., Sugimoto, B., and Huruhata, H. 1964. The effect of fertilization on the growth and frost damage of sugi (Cryptomeria japonica D. D.n) and hinoki (Chamaecyparis obtusa Endl.). J. Jpn. For. Soc. 46: 355–363.

    Google Scholar 

  • Khlebnikova, N.A., Girs, G.I., and Kolovskii, R.A. 1963. Physiological characteristics of conifers of Siberia during the winter period. In Physiology of woody plants of Siberia. Edited by N.A. Khlebnikova. Acad. Sci. USSR, Sib. Branch Trans. For. Timber Inst. 60: 3–16.

    Google Scholar 

  • Klein, R.M., Perkins, T.D., and Myers, H.L. 1989. Nutrient status and winter hardiness of red spruce foliage. Can. J. For. Res. 19: 754–758.

    Article  Google Scholar 

  • Kopitke, J.C. 1941. The effect of potash salts upon the hardening of coniferous seedlings. J. For. 39: 555–558.

    CAS  Google Scholar 

  • Korotaev, A.A. 1994. Untersuchungen zur Frostresistenz von Baumwurzeln. Forstarchiv. 65: 93–95.

    Google Scholar 

  • Koskela, V. 1970. Frost damage on Norway spruce, Scots pine, silver birch and Siberian larch in the forest fertilizer experimental area at Kivisuo. Folia For. 78: 25.

    Google Scholar 

  • Koski, V. 1985. The timing of hardening and dehardening of forest trees. Acta Hortic. 168: 117–124.

    Google Scholar 

  • Koski, V., and Sievänen, R. 1985. Timing of growth cessation in relation to the variations in the growing season. In Crop physiology of forest trees. Edited by P.M. Tiegerstedt, P. Puttonen, and V. Koski. University of Helsinki, Helsinki, Finland. pp. 167–193.

    Google Scholar 

  • Lanner, R.M. 1976. Pattern of shoot development in Pinus and their relationship to growth potential. In Tree physiology and yield improvement. Edited by M.G.R. Cannell and F.T. Last. Academic Press Limited, London. pp. 224–243.

    Google Scholar 

  • Larcher, W. 1985. Kälte and Frost. In Handbuch des Pflanzenkrankheiten. Vol. 1. 7th ed. Edited by P. Sorauer. Parey Buchverlag, Berlin. pp. 107–326.

    Google Scholar 

  • Larsen, J.B. 1976. The susceptibility to frost of Douglas fir provenances and the effect of nutrient status on frost resistance in this species. Forst-and Holzwirt. 31: 299–300.

    Google Scholar 

  • Larsen, J.B. 1978. Frost hardiness in 60 provenances of Douglas fir and the effect of nutrient supply on hardiness. In Establishing Douglas fir. Edited by J.B. Larsen, O. Muhle, and H. Lohbeck. pp. 1–126.

    Google Scholar 

  • Leinonen, I., Repo, T., and Hänninen, H. 1997. Changing environment effects on frost hardiness of Scots pine during dehardening. Ann. Bot. 79: 133–138.

    Article  Google Scholar 

  • Lester, D.T., Lindow, S.E., and Upper, C.D. 1977. Freezing injury and shoot elongation in balsam fir. Can. J. For. Res. 7: 584–588.

    Article  Google Scholar 

  • Levitt, J. 1972. Responses of plants to environmental stresses. Academic Press, Inc., New York.

    Google Scholar 

  • Levitt, J. 1980. Responses of plants to environmental stresses. Vol. 1. 2nd ed. Academic Press, Inc., New York.

    Google Scholar 

  • L’Hirondelle, Si.,. Jacobson, J.S., and Lassoie, J.P. 1992. Acidic mist and nitrogen fertilization effects on growth, nitrate reductase activity, gas exchange, and frost hardiness of red spruce seedlings. New Phytol. 121: 611–622.

    Article  Google Scholar 

  • Lindström, A. 1986. Freezing temperature in the root zone–Effects on growth of containerized Pinus sylvestris and Picea abies seedlings. Scand. J. For. Res. 1: 371–377.

    Article  Google Scholar 

  • Lindström, A. 1987. Effekter av nattlängdsreglering pa plantrötters köldhärdighet. Sveriges lantbruksuniversitet, Institutionen för skogspruduktion, Garpenberg. No 41.

    Google Scholar 

  • Lindström, A. 1989. Equipment for freezing roots and its use to test cold resistance of young and mature roots of Picea abies seedlings. Scand. J. For. Res. 4: 59–66.

    Article  Google Scholar 

  • Lindström, A., and Nyström, C. 1987. Seasonal variation in root hardiness of container-grown Scots pine, Norway spruce, and lodgepole pine seedlings. Can. J. For. Res. 17: 787–793.

    Article  Google Scholar 

  • Lindström, A., and Stattin, E. 1994. Root freezing tolerance and vitality of Norway spruce and Scots pine seedlings; influence of storage duration, storage temperature, and prestorage root freezing. Can. J. For. Res. 24: 2477–2484.

    Article  Google Scholar 

  • Lyr, H., and Hoffmann, G. 1967. Growth rates and growth periodicity of tree roots. Int. Rev. For. Res. 2: 181–206.

    Google Scholar 

  • Malcolm, D.C., and Freezaillah, B.C.Y. 1975. Early frost damage on Sitka spruce seedlings and the influence of phosphorus nutrition. Forestry, 48: 139–145.

    Article  Google Scholar 

  • Maronek, D.M., and Flint, H.L. 1974. Cold hardiness of needles of Pinus strobus L. as a function of geographic source. For. Sci. 20: 135–141.

    Google Scholar 

  • Martem’yanov, P.B., and Pshina, N.B. 1973. Growth and over wintering of exotics under various conditions of soil and foliar dressing. Byull. Gl. Bot. Sada, 87: 50–52.

    Google Scholar 

  • McCreary, D.D.,and Zaerr, J.B. 1987. Root respiration has limited value for assessing Douglas-fir seedling quality. Can. J. For. Res. 17: 1144–1147.

    Google Scholar 

  • McGuire, J.J., and Flint, H.L. 1962. Effects of temperature and light on frost hardiness of conifers. Proc. Am. Soc. Hortic. Sci. 80: 630–635.

    Google Scholar 

  • McKay, H.M. 1994. Frost hardiness and cold-storage tolerance of the root system of Picea sitchensis, Pseudotsuga menziesii, Larix kaempferi and Pinus sylvestris bare-root seedlings. Scand. J. For. Res. 9: 203–213.

    Article  Google Scholar 

  • McLemore, B.F. 1977. Strobili and conelet losses in four species of southern pines. USDA For. Serv. Res. Note. SO-226.

    Google Scholar 

  • Menzies, M.I., and Holden, D.G. 1981. Seasonal frost-tolerance of Pinus radiata, Pinus muricata, and Pseudotsuga menziesii. N.Z. J. For. Sci. 11: 92–99.

    Google Scholar 

  • Menzies, M.I., Holden, D.G., Green, L.M., and Rook, D.A. 1981. Seasonal changes in frost tolerance of Pinus radiata seedlings raised in different nurseries. N.Z. J. For. Res. 11: 100–111.

    Google Scholar 

  • Miller, B., Timmer, V., Staples, C., and Farintosh, L. 1995. Exponential fertilization of white spruce greenhouse transplants at Orono Nursery. Ont. Minist. Res. Nat. Nursery Notes No. 130.

    Google Scholar 

  • Mityga, H.G., and Lanphear, F.O. 1971. Factors influencing the cold hardiness of Taxus cuspidata roots. J. Am. Soc. Hortic. Sci. 96: 83–87.

    Google Scholar 

  • Neilson, RE., Ludlow, M.M., and Jarvis, P.G. 1972. Photosynthesis in Sitka spruce (Picea sitchensis (Bong.) Carr.). II. Response to temperature. J. Appl. Ecol. 9: 721–745.

    Article  Google Scholar 

  • Nienstaedt, H., and King, J.P. 1969. Breeding for delayed bud break in Picea glauca (Moench) Voss. In Proceedings of the 2nd FAO-IUFRO World Consultation on Forest Tree Breeding, 7–16 Aug., Washington, D.C., USA. pp. 61–80.

    Google Scholar 

  • Nilsson, J.-E., and Walfridsson, E.A. 1995. Phenological variation among plus-tree clones of Pinus sylvestris (L.) in northern Sweden. Silvae Genet. 44: 20–28.

    Google Scholar 

  • O’Carrol, N. 1972. Chemical weed control and its effect on the response to K fertilization. Irish For. 29: 20–31.

    Google Scholar 

  • Ögren, E. 1997. Relationship between temperature, respiratory loss of sugar and premature dehardening in dormant Scots pine seedlings. Tree Physiol. 17: 47–51.

    Article  PubMed  Google Scholar 

  • Ögren, E., Nilsson, T., and Sundblad, L.-G. 1997. Relationship between respiratory depletion of sugars and loss of cold hardiness in coniferous seedlings over-wintering at raised temperatures: indications of different sensitivities of spruce and pine. Plant Cell Environ. 20: 247–253.

    Article  Google Scholar 

  • Parker, J. 1955. Annual trends in cold hardiness of Ponderosa pine and Grand fir. Ecology, 36: 377–380.

    Article  Google Scholar 

  • Parker, J. 1957. Seasonal changes in some chemical and physical properties of living cells of Pinus ponderosa and their relation to freezing resistance. Protoplasma, 48: 147–163.

    Article  CAS  Google Scholar 

  • Parker, J. 1959. Seasonal changes in white pine leaves: a comparison of cold resistance and free sugar fluctuations. Bot. Gaz. 121: 46–50.

    Article  CAS  Google Scholar 

  • Parker, J. 1961. Seasonal changes in cold resistance of some northeastern woody evergreens. J. For. 59: 108–111.

    Google Scholar 

  • Parker, J. 1963. Cold resistance in woody plants. Bot. Rev. 29: 123–201.

    Article  CAS  Google Scholar 

  • Parviainen, J. 1975. Determination of annual growth rhythm of the terminal leader and needles of conifers. Commun. Inst. For. Fenn. 84: 5–27.

    Google Scholar 

  • Peace, T.R. 1962. Pathology of trees and shrubs, with special reference to Britain. Clarendon Press, Oxford, UK.

    Google Scholar 

  • Pellett, N.E., and White, D.B. 1969. Effect of soil nitrogen and soil moisture levels on the cold acclimation of container grown Juniperus chinensis var. `Hetzi’. J. Am. Soc. Hortic. Sci. 94: 457–459.

    Google Scholar 

  • Perks, M.P., and McKay, H.M. 1997. Morphological and physiological differences in Scots pine seedlings of six seed origins. Forestry, 70: 223–232.

    Article  Google Scholar 

  • Pümpel, B., Göbl, F., and Tranquillini, W. 1975. Growth, mycorrhiza and frost resistance of Picea abies seedlings following fertilization with different levels of nitrogen. Eur. J. For. Pathol. 5: 83–97.

    Article  Google Scholar 

  • Puttonen, P., and Amott, J.T. 1994. Influence of photoperiod and temperature on growth, gas exchange, and cold hardiness of yellow cypress stecklings. Can. J. For. Res. 24: 1608–1616.

    Article  Google Scholar 

  • Repo, T. 1991. Rehardening potential of Scots pine seedlings during dehardening. Silva Fenn. 25: 13–21.

    Google Scholar 

  • Repo, T. 1992. Seasonal changes of frost hardiness in Picea abies and Pinus sylvestris. Can. J. For. Res. 22: 1949–1957.

    Article  Google Scholar 

  • Repo, T., and Pelkonen, P. 1986. Temperature step response of dehardening in Pinus sylvestris seedlings. Scand. J. For. Res. 1: 271–284.

    Article  Google Scholar 

  • Repo, T., Mäkelä, A., and Hänninen, H. 1990. Modelling frost resistance of trees. Silva Carelina, 15: 61–74.

    Google Scholar 

  • Repo, T., Zhang, M.I.N., Ryyppö, A., Vapaavuori, E.M., and Sutinen, S. 1994. Effects of freeze-thaw injury on parameters of distributed electrical circuits of stems and needles of Scots pine seedlings at different stages of acclimation. J. Exp. Bot. 45: 823–833.

    Article  Google Scholar 

  • Rikala, R., and Huurinainen, S. 1990. Effect of fertilization on the nursery growth and outplanting success of two-year-old containerized Scots pine seedlings. Folia For. 745: 116.

    Google Scholar 

  • Rikala, R., and Repo, T. 1987. Frost resistance and frost damage in Pinus sylvestris seedlings during shoot elongation. Scand. J. For. Res. 2: 433–440.

    Article  Google Scholar 

  • Rikala, R., and Repo, T. 1997. The effect of late summer fertilization on the frost hardening of second-year Scots pine seedlings. New For. 14: 33–44.

    Article  Google Scholar 

  • Ritchie, G.A. 1990. A rapid method for detecting cold injury in conifer seedling root systems. Can. J. For. Res. 20: 26–30.

    Article  Google Scholar 

  • Rosvall-Ahnebrink, G. 1977. Artificiell invintring av skogsplantor i plastväxthus. Institutionen for Skogsgenetik, Uppsala, Sweden. Rapporter och Uppsatser No. 27. pp. 153–161.

    Google Scholar 

  • Rosvall-Ahnebrink, G. 1985. Invintring av plantor för hööst-plantering eller vinterlagring. Sverige lantbruksuniversitet. Skogsfakta Konferns, 7: 33–37.

    Google Scholar 

  • Ryyppö, A. 1998. Temperature acclimation of boreal conifer seedlings at the beginning and end of the growing season. D.Sc. thesis summary. University of Joensuu, Faculty of Forestry, Res. Notes 69.

    Google Scholar 

  • Ryyppö, A., Sutinen, S., Mäenpää, M., Vapaavuori E., and Repo, T. 1997. Frost damage and recovery of Scots pine seedlings at the end of the growing season. Can. J. For. Res. 27: 1376–1382.

    Article  Google Scholar 

  • Ryyppö, A., Repo, T., and Vapaavuori, E. 1998a. Development of freezing tolerance in roots and shoots of Scots pine seedlings at nonfreezing temperatures. Can. J. For. Res. 28: 557–565.

    Article  Google Scholar 

  • Ryyppö, A., Repo, T., and Vapaavuori, E. 1998b. Männyn paakkutaimien juuriston pakkaskestävyys Metlan Suonenjoen tutkimustaimitarhalla talvella 1996–1997. In Taimitarhatutkimuksen Vuosikirja 1998. Edited by Marja Poteri. Metsäntutkimuslaitoksen tiedonantoja, 696: 36–41.

    Google Scholar 

  • Sakai, A. 1983. Comparative study on freezing resistance of conifers with special reference to cold adaptation and its evolutive aspects. Can. J. Bot. 61: 2323–2332.

    Article  Google Scholar 

  • Sakai, A., and Larcher, W. 1987. Frost survival of plants. Responses and adaptation to freezing stress. Ecological Studies Vol. 62. Springer-Verlag, Berlin.

    Google Scholar 

  • Sandvik, M. 1976. Winter vigour in Picea abies (L.) Karst. I. Effect on lifting date, cooling and thawing by cold storage of seedlings. Medd. Nor. Inst. Skogforsk. 32: 337–355.

    Google Scholar 

  • Sandvik, M. 1980. Environmental control of winter stress tolerance and growth potential in seedlings of Picea abies (L.) Karst. N.Z. J. For. Sci. 10: 97–104.

    Google Scholar 

  • Sarjala, T., Taulavuori, K., Savonen, E.-M., and Edfast, A.-B. 1997. Does availability of potassium affect cold hardening of Scots pine through polyamine metabolism? Physiol. Plant. 99: 56–62.

    Article  CAS  Google Scholar 

  • Scheumann, W., and Börtitz, S. 1965. Studien zur Physiologie der Frosthärtung bei Koniferen. Biol. Zentbl. 84: 489–500.

    Google Scholar 

  • Schwarz, W. 1968. Der Einfluss der Temperatur and Tageslänge auf die Frosthärte der Zirbe. In Klimaresistenz, Fotosynthese and Stoffproduktion. Edited by H. Polster. Deutsche Akademie Landwirtschaftwissenshaften, Berlin. pp. 55–63.

    Google Scholar 

  • Schwarz, W. 1970. Der Einfluss der Photoperiode auf das Austreiben, die Froshärte and die Hitzeresistenz von Zirben and Alpenrosen. Flora, 159: 258–285.

    Google Scholar 

  • Silim, S.N., and Lavender, D.P. 1991. Relationship between cold hardiness, stress resistance and bud dormancy in white spruce (Picea glauca (Moench) Voss.) seedlings. In Proceedings of the 11th Annual Meeting of the B.C. Forest Nursery Association, 23–26 Sept., Prince George, B.C. pp. 9–14.

    Google Scholar 

  • Silim, S.N., and Lavender, D.P. 1994. Seasonal patterns and environmental regulation of frost hardiness in shoots of seedlings of Thuja plicata, Chamaecyparis nootkatensis, and Picea glauca. Can. J. Bot. 72: 309–316.

    Article  Google Scholar 

  • Simpson, D.G. 1990. Freezing tolerance of conifer roots. B.C. Minist. For. Res. Br. Progress Rep. EP869. 16 /17.

    Google Scholar 

  • Simpson, D.G. 1993. Root cold hardiness of western Canadian conifers. In Proceedings of the 12th Annual Meeting of the B.C. Forest Nursery Association, 29 Sept.-1 Oct. 1992, Penticton, B.C. pp. 97–105.

    Google Scholar 

  • Smit-Spinks, B., Swanson, B.T., and Markhart, A.H. III. 1984. Changes in water relations, water flux, and root exudate abscisic acid content with cold acclimation of Pinus sylvestris L. Austr. J. Plant Physiol. 11: 431–441.

    Article  CAS  Google Scholar 

  • Smit-Spinks, B., Swanson, B.T., and Markhart, A.H. III. 1985. The effect of photoperiod and thermoperiod on cold acclimation and growth of Pinus sylvestris. Can. J. For. Res. 15: 453–460.

    Article  Google Scholar 

  • Sorensen, F.C., and Miles, R.S. 1974. Differential frost tolerance of ponderosa and lodgepole pine megasporangiate strobili. For. Sci. 20: 377–378.

    Google Scholar 

  • South, D.B., Donald, D.G.M., and Rakestraw, J.L. 1993. Effect of nursery culture and bud status on freeze injury to Pinus taeda and P. elliottii seedlings. S. Afr. For. J. 166: 37–45.

    Google Scholar 

  • Stanley, C.J., and Warrington, I.J. 1988. Seasonal frost tolerance of some ornamental evergreen broad-leaved and coniferous tree and shrub species. N.Z. J. Exp. Agric. 16: 239–248.

    Google Scholar 

  • Strimbeck, G.R., Schaberg, P.G., DeHayes, D.H., Shane, J.B., and Hawley, G.J. 1995. Midwinter dehardening of montane red spruce during a natural thaw. Can. J. For. Res. 25: 2040–2044.

    Article  Google Scholar 

  • Stushnoff, C., and Junttila, O. 1986. Seasonal development of cold stress resistance in several plant species at a coastal and a continental location in North Norway. Polar Biol. 5: 129–133.

    Google Scholar 

  • Stushnoff, C., Remmele, R.L., Essensee, V., McNeil, M., and Black, C.R. 1993. Low temperature induced biochemical mechanisms: implications for cold acclimation and deacclimation. In Global Environmental Change. Vol. 16. NATO Advanced Research Workshop on Interacting Stresses on Plants in a Changing Climate, 13–19 Sept., Wye, UK. Edited by M.B. Jackson. NATO ASI (Adv. Sci. Inst.) Ser I. pp. 647–657.

    Google Scholar 

  • Sutinen, M.-L., Mäkitalo, K., and Sutinen, R 1996. Freezing dehydration damages roots of containerized Scots pine (Pinus sylvestris) seedlings overwintering under subarctic conditions. Can. J. For. Res. 26: 1602–1609.

    Article  Google Scholar 

  • Sutinen, M.-L., Palta, J.P., and Reich, P.B. 1992. Seasonal differences in freezing stress resistance of needles of Pinus nigra and Pinus resinosa: evaluation of the electrolyte leakage method. Tree Physiol. 11: 241–254.

    Article  PubMed  Google Scholar 

  • Sutinen, M.-L., Ritari, A., Holappa, T., and Kujala, K. 1998. Seasonal changes in soil temperature and in the frost hardiness of Scots pine (Pinus sylvestris) roots under subarctic conditions. Can. J. For. Res. 28: 946–950.

    Article  Google Scholar 

  • Takatoi, I., Watanabe, T., and Kamada, U. 1965. Frost damage in forest trees. IX. Frost hardiness in todo fir (Abies sachalinensis (Fr. Schm.)) and white spruce (Picea glauca (Voss.)). Hokkaido For. Exp. Stn. Ann. Rep., Sapporo, Japan. pp. 56–80.

    Google Scholar 

  • Tanaka, Y. 1974. Increasing cold hardiness of container-grown Douglas-fir seedlings. J. For. 12: 349–352.

    Google Scholar 

  • Tanaka, Y., and Timmis, R. 1974. Effects of container density on growth and cold hardiness of Douglas-fir seedlings. In Proceedings of the North American Containerized Forest Tree Seedling Symposium, 26–29 Aug., Denver, Colorado. Edited by R.W. Tinus, W.I. Stein, and W.E. Balmer. Gt. Plains Agric. Counc. Publ. 68. pp. 181–186.

    Google Scholar 

  • Taulavuori, K., Taulavuori, E., Niinimaa, A., and Laine, K. 1996. Frost resistance and pH of cell effusate in needles of artificially deacclimated Scots pine (Pinus sylvestris). Physiol. Plant. 96: 111–117.

    Article  CAS  Google Scholar 

  • Taulavuori, K., Niinimaa, A., Laine, K., Taulavuori, E., and Lähdesmäki, P. 1997. Modelling frost resistance of Scots pine seedlings using temperature, daylength and pH of cell effusate. Plant Ecol. 133: 181–189.

    Article  Google Scholar 

  • Timmis, R. 1974. Effect of nutrient stress on growth, bud set, and hardiness in Douglas-fir seedlings. In Proceedings of the North American Containerized Forest Tree Seedling Symposium, 26–29 Aug., Denver, Colorado. Edited by R.W. Tinus, W.I. Stein, and W.E. Balmer. Gt. Plains Agric. Counc. Publ. 68. pp. 187–193.

    Google Scholar 

  • Timmis, R. 1976. Frost hardiness of western hemlock. In Western hemlock management. Edited by W.A. Arkinson and R.J. Zasoski. Inst. Forest Products Contribution No. 34. pp. 118–125.

    Google Scholar 

  • Timmis, R. 1977. Critical frost temperature for Douglas-fir cone buds. Can. J. For. Res. 7: 1922.

    Article  Google Scholar 

  • Timmis, R. 1978. Frost hardening of containerized conifer seedlings under constant and sequenced temperatures. Weyerhaeuser For. Res. Tech. Rep., Centralia, WA, USA.

    Google Scholar 

  • Timmis, R., and Worrall, J. 1975. Environmental control of cold acclimation in Douglas fir during germination, active growth, and rest. Can. J. For. Res. 5: 464–477.

    Article  Google Scholar 

  • Timmis, R., Flewelling, J., and Talbert, C. 1994. Frost injury prediction model for Douglas-fir seedlings in the Pacific Northwest. Tree Physiol. 14: 855–869.

    Article  PubMed  Google Scholar 

  • Tinus, R.W., Burr, K.E., Wallner, S.J., and King, R.M. 1986. Relation between cold hardiness, root growth capacity and bud dormancy in three western conifers. In Proceedings of the Combined Western Forest Nursery Council and Intermountain Nursery Association Meeting, 12–15 Aug., Tumwater, Washington. Coordinated by T.D. Landis. USDA For. Serv. Gen. Tech. Rep. RM-137. pp. 80–86.

    Google Scholar 

  • Toivonen, A., Rikala, R., Repo, T., and Smolander, H. 1991. Autumn colouration of first year Pinus sylvestris seedlings during frost hardening. Scand. J. For. Res. 6: 31–39.

    Article  Google Scholar 

  • Tumanov, I.I., and Krasavtsev, O.A. 1959. Hardening of northern woody plants by treatment at temperatures below 0°C. Soy. Plant Physiol. 6: 654–667.

    Google Scholar 

  • Ulmer, W. 1937. Über den Jahresgang der Frosthärte einiger immergrüner Arten der alpinen Stufe, sowie der Zirbe and der Fichte. Jahrb. Wiss. Bot. 84: 553–592.

    Google Scholar 

  • van den Driessche, R. 1969a. Measurement of frost hardiness in two-year-old Douglas fir seedlings. Can. J. Plant Sci. 49: 159–172.

    Article  Google Scholar 

  • van den Driessche, R. 1969b. Influence of moisture supply, temperature, and light on frost-hardiness changes in Douglas-fir seedlings. Can. J. Bot. 47: 1765–1772.

    Article  Google Scholar 

  • van den Driessche, R. 1970. Influence of light intensity and photoperiod on frost-hardiness development in Douglas-fir seedlings. Can. J. Bot. 48: 2129–2134.

    Article  Google Scholar 

  • van den Driessche, R. 1973. Prediction of frost hardiness in Douglas fir seedlings by measuring electrical impedance in stems at different frequencies. Can. J. For. Res. 3: 256–264.

    Article  Google Scholar 

  • van den Driessche, R. 1980. Effects of nitrogen and phosphorus fertilization on Douglas-fir nursery growth and survival after outplanting. Can. J. For. Res. 10: 65–70.

    Article  Google Scholar 

  • van den Driessche, R. 1983. Growth, survival, and physiology of Douglas-fir seedlings following root wrenching and fertilization. Can. J. For. Res. 13: 270–278.

    Article  Google Scholar 

  • van den Driessche, R. 1991. Effects of nutrients on stock performance in the forest In Mineral nutrition of conifer seedlings. Edited by R. van den Driessche. CRC Press, Boca Raton, FL. pp. 229–260.

    Google Scholar 

  • Wareing, P.F. 1950. Growth studies in woody plants. II. Effect of day-length on shoot-growth in Pinus silvestris after the first year. Physiol. Plant. 3: 300–314.

    Article  Google Scholar 

  • Weiser, C.J. 1970. Cold resistance and injury in woody plants. Science, 169: 1269–1278.

    Article  PubMed  CAS  Google Scholar 

  • Whitcomb, C.E. 1978. Effect of spring versus fall fertilization on the growth and cold tolerance of woody plants in the landscape. Okla. Agric. Exp. Stn. Res. Rep. P-777. pp. 11–12.

    Google Scholar 

  • Wiemken, V., Kossatz, L., and Ineichen, K. 1996. Frost hardiness of Norway spruce grown under elevated CO2 and increased nitrogen fertilizing. J. Plant Physiol. 149: 433–438.

    Article  CAS  Google Scholar 

  • Zehnder, L.R., and Lanphear, F.O. 1967. The influence of temperature and light on the cold hardiness of Taxus cuspidata. J. Am. Soc. Hortic. Sci. 89: 706–713.

    Google Scholar 

  • Zhurova, P.T., and Patlai, I.M. 1981. 0 morozoustojchivosti odnoletnikh seyantsev sosny obyknovennoj razlichnogo geograficheskogo proiskhozhdeniya i nekotorykh drugikh vidov sosny. Lesovod. Agrolesomelior. Resp. Mezhved. Temat. Sb. 59: 13–17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bigras, F.J., Ryyppö, A., Lindström, A., Stattin, E. (2001). Cold Acclimation and Deacclimation of Shoots and Roots of Conifer Seedlings. In: Bigras, F.J., Colombo, S.J. (eds) Conifer Cold Hardiness. Tree Physiology, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9650-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9650-3_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5587-3

  • Online ISBN: 978-94-015-9650-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics