Skip to main content

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 59))

  • 366 Accesses

Abstract

The constitutive (rheological) equation of state, relating local stress to the rate-of-strain tensor, is derived consistently within the kinetic theory approximation for a dilute solution of elastic polymers in a strong flow. Microscopic polymer parameters (i.e. nonlinear elastic potential and the equilibrium polymer length) enter explicitly this coarse-grained description. This theory describes recent experiments by Groisman and Steinberg [1] on pure elastic turbulence (i.e. a steady state, realized at very low Re number, which is characterized by a non-smooth small-scale velocity distribution). The measured temporal spectra of velocity fluctuations are theoretically explained. A coarse-grained hydrodynamic description of pure elastic turbulence is given by a nonlinear diffusion equation for the velocity gradient tensor. Nonlinear elastic dissipation (originating from the anharmonic polymer elasticity) plays a key role in the emergence of the small scale turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Groisman, V. Steinberg, to appear in “Nature”.

    Google Scholar 

  2. M. Doi, S. Edwards, The theory of polymer dynamics, ( Clarendon Press, Oxford 1986 ).

    Google Scholar 

  3. R. B. Bird, C. F. Curtiss, R. C. Armstrong, O. Hassager, Dynamics of polymeric liquids, John Wiley, NY, 1987.

    Google Scholar 

  4. J.J. Magda, R.G. Larson, J.Non-Newt. Fluid Mech. 30, 1 (1988).

    Article  ADS  Google Scholar 

  5. S.J. Muller, R.G. Larson, E.S.G. Shaqfeh, Rheol. Acta 28, 499 (1989).

    Article  Google Scholar 

  6. R.G. Larson, E.S.G. Shaqfeh, S.J. Muller, J. Fluid Mech 218, 573 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. A. Groisman, V. Steinberg, Phys.Rev.Lett 77, 1480;

    Google Scholar 

  8. A. Groisman, V. Steinberg, Phys.Rev.Lett 78, 1460 (1997);

    Article  ADS  Google Scholar 

  9. A. Groisman, V. Steinberg, Phys.Fluids 10, 2451 (1998);

    Article  ADS  Google Scholar 

  10. A. Groisman, V. Steinberg, Europhys.Lett 43, 165 (1998).

    Article  ADS  Google Scholar 

  11. J. L. Lumley, Symp. Math. 9, 315 (1972).

    Google Scholar 

  12. E. J. Hinch, Phys. of Fluids, 20 S22 (1977).

    Article  ADS  Google Scholar 

  13. G. K. Batchelor, J. Fluid. Mech. 5, 113 (1959);

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. R. H. Kraichnan, Phys. Fluids 11, 945 (1968);

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. B.I. Shraiman, E.D. Siggia, Phys.Rev. E 49, 2912 (1994);

    Article  MathSciNet  ADS  Google Scholar 

  16. M. Chertkov, G. Falkovich, I. Kolokolov, V. Lebedev, Phys. Rev. E 51, 5609 (1995);

    Article  MathSciNet  ADS  Google Scholar 

  17. M. Chertkov, A. Gamba, I. Kolokolov, Phys. Lett. A. 192, 435 (1994);

    Article  ADS  Google Scholar 

  18. E. Balkovsky, M. Chertkov, I. Kolokolov and V. Lebedev, JETP Lett. 61, 1049 (1995);

    ADS  Google Scholar 

  19. B.I. Shraiman and E.D. Siggia, GRAS 321, 279 (1995);

    MATH  Google Scholar 

  20. D. Bernard, K. Gawedzki, and A. Kupiainen, J. Stat. Phys. 90, 519 (1998);

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. M. Chertkov, G. Falkovich, I. Kolokolov, Phys.Rev.Lett. 80, 2121 (1998);

    Article  ADS  Google Scholar 

  22. E. Balkovsky, A. Fouxon, Phys. Rev. E 60, 4164 (1999).

    Google Scholar 

  23. E. Balkovsky, A. Fouxon,V. Lebedev, chao-dyn/9911014.

    Google Scholar 

  24. M. Chertkov, chao-dyn/9911011.

    Google Scholar 

  25. Y. Rabin, S.Q. Wang, K.F. Freed, Macromolecules 22, 2420 (1989).

    Article  ADS  Google Scholar 

  26. H. Wyld, Ann. of Phys 14, 143 (1961);

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. P.C. Martin, E.D. Siggia, H.A. Rose, Phys.Rev.A 8, 423 (1973).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Chertkov, M. (2001). Turbulence in Polymer Solutions. In: Kambe, T., Nakano, T., Miyauchi, T. (eds) IUTAM Symposium on Geometry and Statistics of Turbulence. Fluid Mechanics and Its Applications, vol 59. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9638-1_40

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9638-1_40

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5614-6

  • Online ISBN: 978-94-015-9638-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics