Skip to main content

Abstract

Some representations and extensions of the combinatorial mechanism of splicing are introduced that help to analyze in a simple manner important concepts about splicing processes and about the generative power of H systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Culik II, K. & T. Harju (1991), Splicing semigroups of dominoes and DNA, Discrete Applied MathematicSy 31: 261–277.

    Article  MathSciNet  MATH  Google Scholar 

  2. Head, T. (1987), Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors, Bulletin of Mathematical Biology, 49: 737–759.

    MathSciNet  MATH  Google Scholar 

  3. Head, T.; Gh. Păun & D. Pixton (1997), Language theory and molecular genetics, in G. Rozenberg & A. Salomaa, eds., Handbook of Formal Languages, II: 295–360. Springer, Berlin.

    Google Scholar 

  4. Kleene, S. C. (1956), Representation of events in nerve nets and finite automata, in Automata Studies, Princeton University Press, Princeton.

    Google Scholar 

  5. Lindenmayer, A. (1968), Mathematical models for cellular interaction in development, I and II, Journal of Theoretical Biology, 18: 280–315.

    Article  Google Scholar 

  6. Manca, V. (1998), Logical Splicing in Natural Languages, in M. Kudlek, ed., Proceedings of the MFCS’98 Satellite Workshop on Mathematical Linguistics: 127-136, Universität Hamburg.

    Google Scholar 

  7. Manca, V. (1998), Logical String Rewriting, Theoretical Computer Science, special issue devoted to the 23rd International Symposium on Mathematical Foundations of Computer Science, to appear.

    Google Scholar 

  8. Manca, V. (2000), Splicing Normalization and Regularity, in C. Calude & Gh. Păun, eds., Finite versus Infinite. Contributions to an Eternal Dilemma: 199–215. Springer, London.

    Chapter  Google Scholar 

  9. Păun, Gh. (1996), On the splicing operation, Discrete Applied Mathematics, 70.1:57–79.

    Article  MathSciNet  MATH  Google Scholar 

  10. Păun, Gh.; G. Rozenberg & A. Salomaa (1998), DNA Computing. New Computing Paradigms, Springer, Berlin.

    Book  MATH  Google Scholar 

  11. Pixton, D. (1996), Regularity of splicing languages, Discrete Applied Mathematics, 69.1-2: 101–124.

    Article  MathSciNet  MATH  Google Scholar 

  12. Rozenberg, G. & A. Salomaa, eds., Handbook of Formal Languages, Springer, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Manca, V. (2001). On Some Forms of Splicing. In: Martín-Vide, C., Mitrana, V. (eds) Where Mathematics, Computer Science, Linguistics and Biology Meet. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9634-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9634-3_34

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5607-8

  • Online ISBN: 978-94-015-9634-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics