Skip to main content

Dislocation Density Simulations for Bulk Single Crystal Growth Process Using Dislocation Kinetics Model

  • Conference paper
IUTAM Symposium on Creep in Structures

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 86))

  • 493 Accesses

Abstract

Dislocation-free or low-dislocation density bulk semiconductor crystals such as Si, GaAs and InP are required for substrates of high-performance electronic or optical devices, because dislocations existing in substrate have adverse effects on the performance of devices. They are usually manufactured by the CZ (=Czochralski) or the LEC (=Liquid Encapsulated Czochralski) method. GaAs and InP crystals have low resolved shear stresses and are easy to generate and multiply dislocations due to thermal stress during the LEC growth, so it is an important technical problem to reduce the dislocations as low as possible. One of the methods to grow low-dislocation density crystals is to increase the crystal resistance to thermal stress by doping impurity atoms. As for a Si single crystal, growing a dislocation-free bulk single crystal of large diameter such as 12- or 16-inch remains to be solved in future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, H. and Haasen, P. (1968) Dislocations and plastic flow in the diamond structure, Solid State Physics 22, 27–156.

    Article  Google Scholar 

  • Barrett, D.L., McGuigan, S., Hobgood, H.M., Eldridge, G.W. and Thomas, R.N. (1984) Low dislocation, semi-insulating In-doped GaAs crystals, J. Crystal Growth 70, 179–184.

    Article  ADS  Google Scholar 

  • Brantley, W.A. (1973) Calculated elastic constants for stress problems associated with semiconductor devices, J. Applied Physics 44, 534–535.

    Article  ADS  Google Scholar 

  • Fujioka, K., Nakayama, W. and Sugino, Y. (1992) Numerical simulation of thermal history for Czochralski growth of silicon single crystals, Trans. Japan Society of Mechanical Engineers Series B 58, 3173–3180.

    Article  Google Scholar 

  • INSPEC (1988) Properties of Silicon, EMIS Data Review Series4, 14–16.

    Google Scholar 

  • Jordan, A.S. (1980) A new evaluation of the thermal and elastic constants affecting GaAs crystal growth, J. Crystal Growth 49, 631–642.

    Article  ADS  Google Scholar 

  • Jordan, A.S., Caruso, R. and Von Neida, A.R. (1980) A thermoelastic analysis of dislocation generation in pulled GaAs crystals, The Bell System Technical J. 59, 593–637.

    Article  Google Scholar 

  • Jordan, A.S. (1985) Some thermal and mechanical properties of InP essential to crystal growth modeling, J. Crystal Growth 71, 559–565.

    Article  ADS  Google Scholar 

  • Jordan, A.S., Brown, G.T., Cockayne, B. and Bonner, W.A. (1985) An analysis of dislocation reduction by impurity hardening in the liquid-encapsulated Czochralski growth of InP, J. Applied Physics 58, 4383–4389.

    Article  ADS  Google Scholar 

  • Kawase, T., Arai, T., Miura, Y., Iwasaki, T., Yamabayashi, N., Tatsumi, M., Murai, S., Tada, K. and Akai, S. (1990) Characterization of high quality InP single crystal, Sumitomo Electric Technical Review No.29, 228–235.

    Google Scholar 

  • Maroudas, D. and Brown, R. A. (1991) On the prediction of dislocation formation in semiconductor crystals grown from the melt : analysis of the Haasen model for plastic deformation dynamics, J. Crystal Growth 108(1991)399–415.

    Google Scholar 

  • Miyazaki, N., Uchida, H., Munakata, T., Fujioka, Y. and Sugino, Y. (1992) Thermal stress analysis of silicon bulk single crystal during Czochralski growth, J. Crystal Growth 125, 102–111.

    Article  ADS  Google Scholar 

  • Subramanyam, N. and Tsai, C.T. (1995) Dislocation reduction in GaAs crystals grown from the Czochralski process, J. Materials Processing Technology 55 (1995) 278–287.

    Article  Google Scholar 

  • Suezawa, M., Sumino, K. and Yonenaga, I. (1979) Dislocation dynamics in the plastic deformation of silicon crystals II. Theoretical analysis of experimental results, Physik Status Solidi (a) 51, 217–226.

    Article  ADS  Google Scholar 

  • Tsai, C.T., Dillon, Jr. O.W. and DeAngelis, R.J. (1990) The constitutive equation for silicon and its use in crystal growth modeling, J. Engineering Materials and Technology 120, 183–187.

    Article  Google Scholar 

  • Tsai, C.T. (1991) On the finite element modeling of dislocation dynamics during semiconductor crystal growth, J. Crystal Growth 113, 499–507.

    Article  ADS  Google Scholar 

  • Tsai, C.T., Yao, M.W. and Chait, A. (1992) Prediction of dislocation generation during Bridgman growth of GaAs crystals, J. Crystal Growth 125, 69–80.

    Article  ADS  Google Scholar 

  • Tsai, C.T., Gulluoglu, A.N. and Hartley, C.S. (1993) A crystallographic methodology for modeling dislocation dynamics in GaAs crystals grown from melt, J. Applied Physics 73, 1650–1656.

    Article  ADS  Google Scholar 

  • Völkl, J. and Müller, G. (1989) A new model for the calculation of dislocation formation in semiconductor melt growth by taking into account the dynamics of plastic deformation, J. Crystal Growth 97, 136–145.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Miyazaki, N. (2001). Dislocation Density Simulations for Bulk Single Crystal Growth Process Using Dislocation Kinetics Model. In: Murakami, S., Ohno, N. (eds) IUTAM Symposium on Creep in Structures. Solid Mechanics and its Applications, vol 86. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9628-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9628-2_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5623-8

  • Online ISBN: 978-94-015-9628-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics