Skip to main content

The Difference between Clocks and Turing Machines

  • Chapter
Functional Models of Cognition

Part of the book series: Theory and Decision Library ((TDLA,volume 27))

Abstract

During several centuries the prevailing metaphor for the human brain was the “clock” This metaphor became precise with Descartes. For Descartes, there is a mechanical body and a brain, a « statue d’ automate», similar to the fantastic automatic devices of his time and ruled by cog-wheels, gears and pulleys. Separated from it, but ruling it, is the « res cogitans ». The physical connecting point of this dualism was provided by the pineal gland; the philosophical compatibility was given by the fact that the res cogitans too is governed by rules, logical/deductive ones. «Non evident knowledge may be known with certainty, provided that it is deduced from true and known principles, by a continually and never interrupted movement of thought which has a clear intuition of each individual step». Knowledge is a sequence or « a chain » where « the last ring… is connected to the first» [Descartes,1619–1664; rule III]. In view of their role in the mathematical work of Descartes, it may be sound to consider these remarks as the beginning of Proof Theory; mathematics is no longer (or not only) the revelation or inspection of an existing reality, where “proofs” (mostly informal and incomplete, often wrong) were only meant to display “truth”, but it is based on the manipulation of algebraic symbols and stepwise deductions from evident knowledge. Descartes’ Analytic Geometry, an algebraic approach to Geometry, brought the entire realm of mathematics under the control of formal deductions and algebraic computations, as distinct from geometrical observation. In Algebra and, thus, in Algebraic or Analytic Geometry, proofs are sequences of equations, formally manipulated, independently of their (geometric) meaning. Three centuries later, Proof Theory will be the rigorous (mathematical) description of these deductions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bach Y Rita P., Memosynaptic diffusion neurotransmission and late brain organization, 1995.

    Google Scholar 

  • Buffat M., “Diderot, le corps de la machine”, “Revue des Sciences Humaines”, n. 186–187, 1982.

    Google Scholar 

  • Beeson M. J., “Computerizing Mathematics: Logic and Computation” in [Herken,1995].

    Google Scholar 

  • Berestovoy B., Longo G, Longo G., “Il risultato di indipendenza di Paris-Harrington per l’Aritmetica di Peano”, GNSAGA, Roma, 1981

    Google Scholar 

  • Chaitin G. J.., “An Algebraic Equation for the Halting Problem” in [Herken,1995].

    Google Scholar 

  • Conrad M., “The Price of Programmability” in [Herken,1995].

    Google Scholar 

  • Davis M., Computability and Unsolvabilty, MacGraw-Hill, 1958

    Google Scholar 

  • Davis M., “Mathematical Logic and the Origin of Modem Computing” and “Influences of Mathematical Logic in Computer Science” in [Herken,1995].

    Google Scholar 

  • Descartes R., Regulae ad directionem ingenii, 1619–1664.

    Google Scholar 

  • Diderot D., Le rêve de d’Alembert, Flammarion, 1973.

    Google Scholar 

  • Dowek G., “Démonstration automatique dans le Calcul des Constructions”, Thèse, Univ. Paris VII, 1991. Drake E, Set Theory, North Holland, 1974

    Google Scholar 

  • Enriquez E, Problemi della Scienza, Torino, 1909.

    Google Scholar 

  • Enriquez E, Natura, Ragione e Storia, Antologia di scritti, Einaudi, 1958.

    Google Scholar 

  • Girard J.Y., Lafont Y., Taylor P. Proofs and Types, Cambridge U.P., 1989.

    Google Scholar 

  • Goldbeter A., “Non-linearity and chaos in biochemical reactions”, lecture delivered at the Academia Europaea, Cracow, 1995.

    Google Scholar 

  • Goldwasser S., Micali S., Rackoff C., “The knowledge complexity of interactive proof systems”, “17th ACM Symp. on Theory of Computing”, New York, 1985.

    Google Scholar 

  • Goodman N., Fact, Fiction and Forecast, Harvard U.P., 1983.

    Google Scholar 

  • Graubard S. (ed.), The Artificial Intelligence Debate, M.I.T. Press, 1989.

    Google Scholar 

  • Hadamard J., The psychology of invention in the mathematical field, Princeton U.P., 1945. Hardy L., A mathematician’s apology, 1940.

    Google Scholar 

  • Hasslacher L., `Beyond the Turing Machine“ in [Herken,1995].

    Google Scholar 

  • Herken R., The Universal Turing Machine, Springer-Verlag, 1995.

    Google Scholar 

  • Hoffmann P., “Modèle mécaniste et modèle animiste”, “Revue des Sciences Humaines”, 186–187, 1982. Kreisel G., A. Macintyre “Constructive Logic versus Algebraization T’ in Brouwer Centenary Symposium, North-Holland, 1982.

    Google Scholar 

  • JSL, Feferman S., S. Sieg, S. Simpson, three papers dedicated to the partial realization of Hilbert’s program, “Journal of Symbolic Logic”, 53, 2, 1988.

    Google Scholar 

  • Lakatos I., Proofs and Refutations, Cambridge U. Press, 1976.

    Google Scholar 

  • Lassègue J., “L’intelligence artificielle et la question du continu”, Thèse, Univ. Paris X - Nanterre, 1994. Lightill J., “The recently recognized failure of predictability in Newtonian dynamics ” “Proc. R. Soc. Lond.”, 407 (35–50), 1986.

    Google Scholar 

  • Longo G., “Some aspects of impredicativity: notes on Weyl’s philosophy of Mathematics and on todays’ Type Theory” in Logic Colloquium 87, Studies in Logic (Ebbinghaus et al. eds), North-Holland, 1989.

    Google Scholar 

  • Longo G., “Reflections on Mathematics and Computer Science”, “European Congress of Mathematics”, Paris 1992; (Ebbinghaus ed.), 1994.

    Google Scholar 

  • Longo G., “Sur l’émergence de l’objectivité des Mathématiques”, “Intellectica”, 1995.

    Google Scholar 

  • Longo G., Misted K., Soloviev S., “The Genericity Theorem and Parametricity in the Polymorphic A-calculus”, “Theoretical Computer Science”, 1993, (323–349).

    Google Scholar 

  • Lynch N. et al., Atomic Transactions, Kaufmann, 1994.

    Google Scholar 

  • McCorduck P., The Universal Machine: Confessions of a Technological Optimist, McGraw Hill, 1986. Makowsky Y.A: Confessions of a Technological Optimist, McGraw Hill, 1986. Makowsky Y.A., “Mental Images and the Architecture of Concepts” in [Herken, 1995 ].

    Google Scholar 

  • Maffei L., Mecacci L., La Visione, Mondadori, 1979.

    Google Scholar 

  • Paris J., Harrington L., “A mathematical incompleteness in Peano Arithmetic”, in Handbook of Mathematical Logic, 1978.

    Google Scholar 

  • Poincaré H., Les Méthodes Nouvelles de la Mécanique Celeste, Paris, 1892.

    Google Scholar 

  • Poincaré H., La Science et l’Hypothese, Flammarion, Paris, 1902.

    Google Scholar 

  • Poincaré H., La valeur de la Science, Flammarion, Paris, 1905.

    Google Scholar 

  • Putnam H., “Much Ado About Not Very Much”, in [Graubard,1989].

    Google Scholar 

  • Rogers H., Theory of Recursive Functions and Effective Computability, 1967.

    Google Scholar 

  • Turing A, “Computing Machines and Intelligence”, “Mind”, LIX, 1950.

    Google Scholar 

  • Schwartz J., “The New Connectionism”, in [Graubard,1989].

    Google Scholar 

  • Shoening U., “Complexity Theory and Interaction” in [Herken,1995]

    Google Scholar 

  • Wegner P., “The expressive power of interaction”, Brown Univ. Techn. Rep., 1995.

    Google Scholar 

  • Wegner P., “A framework for empirical Computer Science”, Brown Univ. Techn. Rep. CS-95–18, 1995. Weyl H., Das Kontinuum, 1918.

    Google Scholar 

  • Weyl H., Symmetry, Princeton University Press, 1952.

    Google Scholar 

  • Wittgenstein L., Remarks on the foundation of Mathematics, 1956.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Longo, G. (1999). The Difference between Clocks and Turing Machines. In: Carsetti, A. (eds) Functional Models of Cognition. Theory and Decision Library, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9620-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9620-6_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5360-2

  • Online ISBN: 978-94-015-9620-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics