Skip to main content

Molecular Biology of Echinostomes

  • Chapter

Abstract

Although most molecular studies on echinostomes have focused on species identification and systematics, molecular techniques are not limited to these fields. Over the past decade molecular technology has advanced at a rapid rate; techniques are now available to investigate gene expression (Schechtman et al., 1995 working on an mRNA protein in Schistosoma), to resolve protein structure and function (Davis, 1997 studying spliced leader RNAs in flatworms), to determine genome organisation (Boore, 1999 reviewed the mitochondrial genome) and for species diagnostics and vaccine development (Bergquist, 1995 looking at possible vaccines for schistosomiasis).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adlard, R. D., Barker, S. C., Blair, D. and Cribb, T. H. (1993) Comparison of the second internal transcribed spacer (ribosomal DNA) from populations and species of Fasciolidae (Digenea), International Journal for Parasitology 23, 423–425.

    Article  PubMed  CAS  Google Scholar 

  • Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J. D. (1989) Molecular biology of the cell. Second edition. Garland Publishing, New York.

    Google Scholar 

  • Amheim, N. (1983) Concerted evolution of multigene families. In: Evolution of genes and proteins. Nei, M. and Koehn, R. K. (eds.) Sinauer Associates, Massachusetts, 38–61.

    Google Scholar 

  • Barker, S. C. and Blair, D. (1996) Molecular phylogeny of Schistosoma species supports traditional groupings within the genus, Journal of Parasitology 82, 292–298.

    Article  PubMed  CAS  Google Scholar 

  • Baršiene, J. and Kiseliene, V. (1990) Karyological studies of Echinoparyphium aconiatum (Dietz, 1909), Hypoderaeum conoideum (Bloch, 1782) Dietz, 1909 and Neoacanthoparyphium echinatoides (Filippi, 1854) Odening, 1962 (Trematoda, Echinostomatidae), Acta Parasitologia Polonica 35, 272–276.

    Google Scholar 

  • Baršiene, J. and Kiseliene, V. (1991) Karyological studies of Trematodes within the genus Echinostoma, Acta Parasitologica Polonica 36, 25–30.

    Google Scholar 

  • Bartels, J. L., Murtha, M. T. and Ruddle, F. H. (1993) Multiple Hox/HOM-class homeoboxes in Platyhelminthes, Molecular Phylogenetics and Evolution 2, 143–151.

    Article  PubMed  CAS  Google Scholar 

  • Bergquist, N. R. (1995) Controlling schistosamiasis by vaccination: a realistic option? Parasitology Today 11, 191.

    Article  Google Scholar 

  • Blair, D., Agatsuma, T., Watanobe, T., Okamoto, M. and Ito, A. (1997a) Geographical genetic structure within the human lung fluke, Paragonimus westermani, detected from DNA sequences, Parasitology 115, 411–417.

    Article  PubMed  CAS  Google Scholar 

  • Blair, D., van Herwerden, L., Hirai, H., Taguchi, T., Habe, S., Hirata, M., Lai, K., Upatham, S. and Agatsuma, T. (1997b) Relationships between Schistosoma malayensis and other Asian schistosomes deduced from DNA sequences, Molecular and Biochemical Parasitology 85, 259–263.

    Article  PubMed  CAS  Google Scholar 

  • Boore, J. L. (1999) Survey and Summary: Animal mitochondrial genomes, Nucleic Acids Research 27, 1767–1780.

    Article  PubMed  CAS  Google Scholar 

  • Bowles, J., Blair, D. and McManus, D. P. (1995a) A molecular phylogeny of the genus Echinococcus, Parasitology 110, 317–328.

    Article  CAS  Google Scholar 

  • Bowles, J., Blair, D. and McManus, D. P. (1995b) A molecular phylogeny of the human schistosomes, Molecular Phylogenetics and Evolution 4, 103–109.

    Article  PubMed  CAS  Google Scholar 

  • Blair, D., Campos, A., Cummings, M. P., and Laclette, J. P. (1996) Evolutionary biology of parasitic platyhelminthes: the role of molecular phylogenetics, Parasitology Today 12, 66–71.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, D. R. and McLennan, D. A. (1993) Parascript — Parasites and the language of evolution. Smithsonian Institute Press, Washington.

    Google Scholar 

  • Churchill, H. M. (1950) Germ cell cycle of Echinostoma revolutum (Froelich, 1802), Journal of Parasitology, 36 (6, Suppl. Sec. 2), 15.

    Google Scholar 

  • Coleman, A. W. and Mai, J. C. (1997) Ribosomal DNA ITS-1 and ITS-2 sequence comparisons as a tool for predicting relatedness, Journal of Molecular Evolution 45, 168–177.

    Article  PubMed  CAS  Google Scholar 

  • Davis, R. E. (1997) Surprising diversity and distribution of spliced leader RNAs in flatworms, Molecular and Biochemical Parasitology 87, 29–48.

    Article  PubMed  CAS  Google Scholar 

  • Després, L., Imbert-Establet, D., Combes, C. and Bonhomme, F. (1992) Molecular evidence linking hominid evolution to recent radiations of schistosomes, Molecular Phylogenetics and Evolution 1, 295–304.

    Article  PubMed  Google Scholar 

  • Dover, G. (1982) Molecular drive: a cohesive mode of species evolution, Nature 299, 111–117.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using bootstrap, Evolution 39, 783–791.

    Article  Google Scholar 

  • Felsenstein, J. (1988) Phylogenies from molecular sequences: Inference and reliability, Annual Review of Genetics 22, 521–565.

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein, J. (1989) PHYLIP — Phylogeny inference package (Version 3.2), Cladistics 5, 164–166.

    Google Scholar 

  • Frölich, J. A. (1802) Beyträge zur Naturgeschichte der Eingeweidewürmer, Naturforscher Halle 29, 5–96.

    Google Scholar 

  • Fujino, T., Takahashi, Y. and Fried, B. (1995) A comparison of Echinostoma trivolvis and E. caproni using random amplified polymorphic DNA analysis, Journal of Helminthology 69, 263–264.

    Article  PubMed  CAS  Google Scholar 

  • Fujino, T., Zhiliang, W., Nagano, I., Takahashi, Y. and Fried, B. (1997) Specific primers for the detection of genomic DNA of Echinostoma trivolvis and E. caproni (Trematoda:Echinostomatidae), Molecular and Cellular Probes 11, 77–80.

    Article  PubMed  CAS  Google Scholar 

  • Higgins, D. G. and Sharp, P. M. (1988) CLUSTAL: A package for performing multiple sequence alignment on a microcomputer, Gene 73, 237–244.

    Article  PubMed  CAS  Google Scholar 

  • Hillis, D. M. and Dixon, M. T. (1991) Ribosomal DNA: Molecular evolution and phylogenetic inference, Quarterly Review of Biology 66, 411–446.

    Article  PubMed  CAS  Google Scholar 

  • Hillis, D. M., Moritz, C. and Mable, B. K. (1996) Molecular Systematics. Second edition. Sinauer Associates, Sunderland, MA, USA.

    Google Scholar 

  • Hoelzel A. R. (ed.) (1992) Molecular genetic analysis of populations a practical approach. Oxford University Press, Oxford.

    Google Scholar 

  • Kanev, I. (1985) On the morphology, biology, ecology and taxonomy of E. revolutum group (Trematoda: Echinostomatidae: Echinostoma) Ph.D. Dissertation, University of Sofia, Bulgaria. English abstract.

    Google Scholar 

  • Kanev, I., Eisenhut, U., Ostrowski De Nunez, M., Manga-Gonzalez, M. Y. and Radev, V. (1993) Penetration and paraoesophageal gland cells in Echinostoma revolutum cercariae from its type locality, Helminthologia. 30, 131–133.

    Google Scholar 

  • Kumar, S., Tamura, K. and Nei, M. (1993) MEGA: Molecular evolutionary genetics analysis. Version 1.02. The Pennsylvanian State University, University Park, Pennsylvania.

    Google Scholar 

  • Kristensen, A. R. and Fried, B. (1991) A comparison of Echinostoma caproni and Echinostoma trivolvis (Trematoda: Echinostomatidae) adults using isoelectric-focusing, Journal of Parasitology 77, 496–498.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, E. (1989) Henderson’s dictionary of biological terms. 10th edition. Longman Scientific and Technical, England.

    Google Scholar 

  • Lewin, B. (1990) Genes IV. Oxford University Press, Oxford.

    Google Scholar 

  • Li, W. H. (1997) Molecular evolution. Sinauer Associates, Sunderland Massachusetts, USA.

    Google Scholar 

  • Littlewood, D. T. J., Rohde, K. and Clough, K. A. (1999) The interrelationships of all major groups of Platyhelminthes: phylogenetic evidence from morphology and molecules, Biological Journal of the Linnean Society 66, 75–114.

    Article  Google Scholar 

  • Litvaitis, M. K. and Rohde, K. (1999) A molecular test of platyhelminth phylogeny: inferences from partial 28S rDNA sequences, American Microscopical Society 118, 42–56.

    Google Scholar 

  • Luton, K., Walker, D. and Blair, D. (1992) Comparisons of ribosomal internal transcribed spacers from two congeneric species of flukes (Trematoda: Digenea), Molecular and Biochemical Parasitology 56, 323–328.

    Article  PubMed  CAS  Google Scholar 

  • McCarthy, A. M. (1990) Speciation of echinostomes: evidence for the existence of two sympatric sibling species in the complex Echinoparyphium recurvatum (von Linstow 1873) (Digenea: Echinostomatidae), Parasitology 101, 35–42.

    Article  PubMed  Google Scholar 

  • Mollaret, I., Jamieson, B. G. M., Adlard, R. D., Hugall, A., Lecointre, G., Chombard, C., and Justine, J. L. (1997) Phylogenetic analysis of the Monogenea and their relationships with Digenea and Eucestoda inferred from 28S rDNA sequences, Molecular Biochemistry and Parasitology 90, 433–438.

    Article  CAS  Google Scholar 

  • Morgan, J. A. T. (1997) Evaluation of DNA sequences for solving taxonomic problems in trematodes, specifically echinostomes. Ph.D. Dissertation, James Cook University of North Queensland, Australia.

    Google Scholar 

  • Morgan, J. A. T. and Blair, D. (1995) Nuclear rDNA ITS sequence variation in the trematode genus Echinostoma: an aid to establishing relationships within the 37 collar-spine group, Parasitology 111, 609–615.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, J. A. T. and Blair, D. (1998a) Relative merits of nuclear ribosomal internal transcribed spacers and mitochondrial CO1 and ND1 genes for distinguishing among Echinostoma species (Trematoda), Parasitology 116, 289–297.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, J. A. T. and Blair, D. (1998b) Mitochondrial ND1 gene sequences used to identify echinostome isolates from Australia and New Zealand, International Journal for Parasitology 28, 493–502.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, J. A. T. and Blair, D. (1998c) Trematode and monogenean rRNA ITS2 secondary structures support a four-domain model, Journal of Molecular Evolution 47, 406–419.

    Article  PubMed  CAS  Google Scholar 

  • Moritz, C., Dowling, T. E. and Brown, W. M. (1987) Evolution of animal mitochondrial DNA: relevance for population biology and systematics, Annual Review of Ecology and Systematics 18, 269–292.

    Article  Google Scholar 

  • Morrison, D. A. and Ellis, J. T. (1997) Effects of nucleotide sequence alignment on phylogeny estimation: A case study of 18S rDNAs of Apicomplexa, Molecular Biology and Evolution 14, 428–441.

    Article  PubMed  CAS  Google Scholar 

  • Mouahid, A. and Moné, H. (1988) Echinoparyphium elegans (Looss, 1899) (Digenea: Echinostomatidae): the life cycle and redescription of the adult with a revision of the 43-spined members of the genus Echinoparyphium, Systematic Parasitology 12, 149–157.

    Article  Google Scholar 

  • Mutafova, T. (1994) Karyological studies on some species of the families Echinostomatidae and Plagiorchiidae and aspects of chromosome evolution in trematodes, Systematic Parasitology 28, 229–238.

    Article  Google Scholar 

  • Nadler, S. A. (1990) Molecular approaches to studying helminth population genetics and phylogeny, International Journal for Parasitology 20, 11–29.

    Article  PubMed  CAS  Google Scholar 

  • Pace, N. R. , Olsen, G. J. and Woese, C. R. (1986) Ribosomal RNA phylogeny and the primary lines of evolutionary descent, Cell 45, 325–326.

    Article  PubMed  CAS  Google Scholar 

  • Petrie, J. L., Burg III, E. F. and Cain, G. D. (1996) Molecular characterization of Echinostoma caproni and E. paraensei by random amplification of polymorphic DNA (RAPD) analysis, Journal of Parasitology 82, 360–362.

    Article  PubMed  CAS  Google Scholar 

  • Richard, J. and Voltz, A. (1987) Preliminary data of the chromosomes of Echinostoma caproni Richard 1964 (Trematoda: Echinostomatidae), Systematic Parasitology 9, 169–172.

    Article  Google Scholar 

  • Ross, G. C., Fried, B. and Southgate, V. R. (1989) Echinostoma revolutum and E. liei: Observations on enzymes and pigments, Journal of Natural History 23, 977–981.

    Article  Google Scholar 

  • Schechtmann, D., Ram, D., Tarrab-Hazdai, R., Arnon, R. and Schechter, I. (1995) Stage-specific expression of the mRNA encoding a 14–3–3 protein during the life cycle of Schistosoma mansoni, Molecular Biochemistry and Parasitology 73, 275.

    Article  Google Scholar 

  • Schlötterer, C., Hauser, M.-T., von Haeseler, A. and Tautz, D. (1994) Comparative evolutionary analysis of rDNA ITS regions in Drosophila, Molecular Biology and Evolution 11, 513–522.

    PubMed  Google Scholar 

  • Simpson, A. J. G., Scher, A. and McCutchan, T. F. (1982) The genome of Schistosoma mansoni: isolation of DNA, its size, bases and repetitive sequences, Molecular Biochemistry and Parasitology 6, 125.

    Article  CAS  Google Scholar 

  • Skryabin, K. I. (1979) Trematodes of animals and man: Fundamentals of trematology. Vol. 1. Amerind Publishing Company, New Delhi.

    Google Scholar 

  • Sloss, B., Meece, J., Romano, M. and Nollen, P. M. (1995) The genetic relationships between Echinostoma caproni, E. paraensei and E. trivolvis as determined by electrophoresis, Journal of Helminthology 64, 243–246.

    Article  Google Scholar 

  • Sorensen, R. E., Curtis, J. and Minchella, D.J. (1998) Intraspecific variation in the rDNA ITS loci of 37-collar-spined echinostomes from North America: implications for sequence-based diagnoses and phylogenetics, Journal of Parasitology 84, 992–997.

    Article  PubMed  CAS  Google Scholar 

  • Swofford, D. L., Olsen, G. J., Waddell, P. J. and Hillis, D. M. (1996) Phylogenetic inference. In Molecular systematics 2nd edition. Hillis, D. M., Moritz, C. and Mable, B. (eds.), K. Sinauer Associates Inc., Sunderland, Massachusetts U.S.A., 407–514.

    Google Scholar 

  • Terasaki, K., Moriyama, N., Tani, S. and Ishida, K. (1982) Comparative studies on the karyotypes of Echinostoma cinetorchis and E. hortense (Echinostomatidae: Trematoda), Japanese Journal of Parasitology 31, 569–574.

    Google Scholar 

  • van der Sande, C. A. F. M., Kwa, M., van Nues, R. W., van Heerikhuizen, H., Raué, H. A. and Planta, R. J. (1992) Functional analysis of internal transcribed spacer 2 of Saccharomyces cerevisiae ribosomal DNA, Journal of Molecular Biology 223, 899–910.

    Article  PubMed  Google Scholar 

  • van Nues, R. W., Rientjes, J. M. J., Morré, S. A., Mollee, E., Planta, R. J., Venema, J. and Raué, H. A. (1995) Evolutionarily conserved structural elements are critical for processing of internal transcribed spacer 2 from Saccharomyces cerevisiae precursor ribosomal RNA, Journal ofMolecular Biology 250, 24–36.

    Article  Google Scholar 

  • Vasilev, I., Komandarev, S., Mikhov, L. and Kanev, I. (1978) Comparative electrophoretic studies of certain species of genus Echinostoma with 37-collar spines, Khelmintologia 6, 31–38.

    Google Scholar 

  • Voltz, A., Richard, J. and Pesson, B. (1987) A genetic comparison between natural and laboratory strains of Echinostoma (Trematoda) by isoenzyme analysis, Parasitology 95, 471–477.

    Article  PubMed  CAS  Google Scholar 

  • Voltz, A., Richard, J., Pesson, B., and Jourdane, J. (1988) Isoenzyme analysis of Echinostoma liei: Comparison and hybridization with other African species, Experimental Parasitology 66, 13–17.

    Article  PubMed  CAS  Google Scholar 

  • Wesson, D. M., McLain, D. K., Oliver, J. H., Piesman, J. and Collins, F. H. (1993) Investigation of the validity of species status of Ixodes dammini (Acari: Ixodidae) using rDNA, Proceedings of the National Acadamy of Sciences of the USA 90, 10221–10225.

    Article  CAS  Google Scholar 

  • Wheeler, W. C. and Gladstein, D. (1994) MALIGN: A multiple sequence alignment program, Journal of Heredity 85, 417.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Morgan, J.A.T., Blair, D. (2000). Molecular Biology of Echinostomes. In: Fried, B., Graczyk, T.K. (eds) Echinostomes as Experimental Models for Biological Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9606-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9606-0_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5392-3

  • Online ISBN: 978-94-015-9606-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics