Skip to main content

Applications: Energy and Chemicals Industries

  • Chapter
  • 176 Accesses

Abstract

The trend to smaller and smaller structures, that is, miniaturization, is well known in the microelectronics industry, evidenced by the rapid increase in computing power through reduction of the area and volume needed per transistor on chips. In the energy and chemicals areas, this same trend towards miniaturization, i.e., control of function and/or structure at the nanoscale, also is occurring, but for different reasons. Smallness in itself is not the goal. Instead, it is the realization or now even the expectation that new properties intrinsic to nanostructures will enable breakthroughs in a multitude of different technologically important areas. Nanoengineering is expected to lead to significant improvements in solar energy conversion and storage; better energy-efficient lighting; stronger, lighter materials that will. improve transportation efficiency; use of low-energy chemical pathways to break down toxic substances for remediation and restoration; and better sensors and controls to increase efficiency in manufacturing and processing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alivisatos, A.P. and J.B. Katari. 1995. Optical and electrical properties of semicionductor nanocrystal assemblies. Book of Abstracts, 210th ACS National Meeting, Chicago, IL, August 20–24.

    Google Scholar 

  2. Attard, G.S., et al. 1997. Mesoporous platinum films from lyotropic liquid crystalline phases. Science 278: 838.

    Article  CAS  Google Scholar 

  3. Averback, R.S., J. Bernhoic, and D.L. Nelson. 1991. In MRS Symposium Proceedings 206. Materials Research Society.

    Google Scholar 

  4. Baker, R.T.K. 1998. Synthesis, properties, and applications of graphite nanofibers. In R&D status and trends in nanoparticles, nanostructured materials, and nanodevices in the United States. Ed. R.W. Siegel, E. Hu, and M.C. Roco. Baltimore: International Technology Research Institute, World Technology (WTEC) Division, Loyola College. NTIS #PB98–117914 (also available at http://itri.loyola.edu/nano/US.Review/).

  5. Beck, J.S., J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.-W. Chu, D.H. Olsen, E.W. Shepard, S.B. McCullen, J.B. Higgins, and J.L. Schlenker. 1992. J. Am. Chem. Soc. 114: 10834.

    Article  CAS  Google Scholar 

  6. Braun, P.V., P. Osenar, and S.I. Stupp. 1996. Semiconducting superlattices templated by molecular assemblies. Nature 368: 325.

    Article  Google Scholar 

  7. Brinker, C.J. 1996. Curr. Opin. Solid State Mater. Sci. 1: 798.

    Article  CAS  Google Scholar 

  8. Brousse, T., R. Retoux, U. Herterich, and D.M. Schleich. 1998. Thin-film crystalline SnO2-lithium electrodes. J. Electrochem. Soc. 145: 1–4.

    Article  CAS  Google Scholar 

  9. Brown, D.M., G. Dresselhaus, and M.S. Dresselhaus. 1997. Reversible hydrogen uptake in carbon based materials. In MRS Conference Proc., Symposium Z, Dec 1–5.

    Google Scholar 

  10. Bubala, A. (Sony spokesman). 1997. Comments of April 23, posted by the battery technology team, KERL (http://lily.keri.re.kr/battery/wwwboard/).

  11. Chang, C.C. 1999. Ph.D. dissertation. Carnegie Mellon University.

    Google Scholar 

  12. Chang, C.C., P.N. Kumta, and M.A. Sriram. 1997. Cathode materials for lithium-ion secondary cells. United States patent pending.

    Google Scholar 

  13. Chianelli, R.R. 1998. Synthesis, fundamental properties, and applications of nanocrystals, sheets, and fullerenes based on layered transition metal chalcogenides. In R&D status and trends.

    Google Scholar 

  14. Chianelli, R.R., M. Daage, and M.J. Ledoux. 1994. Advances in Catalysis 40: 177.

    Article  CAS  Google Scholar 

  15. Courtney, I.A., and J.R. Dahn. 1997. Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites. J. Electrochem. Soc. 144: 2045–2052.

    Article  CAS  Google Scholar 

  16. Dillon, A.C., K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune and M.J. Heben. 1997. Storage of hydrogen in single walled carbon nanotubes. Nature 386: 377–379.

    Article  CAS  Google Scholar 

  17. Dresselhaus, M.S. 1998. Carbon-based nanostructures. In R&D status and trends.

    Google Scholar 

  18. Dresselhaus, M.S., and G. Dresselhaus. 1995. Ann. Rev. Mat. Sci. 25: 487.

    Article  CAS  Google Scholar 

  19. Dresselhaus, M.S., and P.C. Eklund. 1999. Hydrogen adsorption in carbon materials. Preprint for MRS Bulletin (Nov.).

    Google Scholar 

  20. Dresselhaus, M.S., G. Dresselhaus, and P. Eklund. 1996. Science of fullerenes and carbon nanotubes. San Diego: Academic Press.

    Google Scholar 

  21. Gratzel, M.; K. Brooks, and A.J. McEvoy. 1999. Dye-sensitised nanocrystalline semiconductor photovoltaic devices. Innovative materials in advanced energy technologies, 577–584. Faenza, Italy: Advanced. Science and Technology.

    Google Scholar 

  22. Haruta, M. 1997a. Catalyst Surveys of Japan 1(61).

    Google Scholar 

  23. Haruta, M. 1997b. Catalysis Today 36: 153.

    Article  CAS  Google Scholar 

  24. Hu, E., and D. Shaw. 1999. Synthesis and assembly. In Nanostructure science and technology,1999, National Science and Technology Council (NSTC) Report, R.W. Siegel, E. Hu and M.C. Roco, Eds., Baltimore: International Technology Research Institute, World Technology (WTEC) Division. Web site: http://itri.loyola.edu/nano/IWGN.Worldwide.Study/. Also published by Kluwer Academic Publishers (1999).

  25. Huo, Q., D.I. Margolese, U. Ciesla, P. Feng, T.E. Gier, P. Sieger, R. Leon, P.M. Petroff, F. Schuth, and G.D. Stucky. 1994. Nature 368: 317.

    Article  CAS  Google Scholar 

  26. Huynh, W.U., X.G. Peng, A.P. Alivisatos. 1999. CdSe nanocrystal rods/poly(3hexylthiophene) composite photovoltaic devices. Proc. Electrochem. Soc. 99–11.

    Google Scholar 

  27. Idota, Y., T. Kubota, A. Matsufuji, Y. Maekawa, and T. Miyasaka. 1997. Tin-based amorphous oxide: A high-capacity lithium-ion-storage material. Science 276: 1395–1397.

    Article  CAS  Google Scholar 

  28. Idota, Y., M. Mishima, Y. Miyaki, T. Kubota, and T. Miyasaka. 1995. European Patent 651, 450A1.

    Google Scholar 

  29. Jones, C.W., and W.J. Koros. 1994. Carbon 32: 1419.

    Article  CAS  Google Scholar 

  30. Kresge, C.T., M.E. Leonowicz, W.J. Roth, J.C. Vartuli, and J.S. Beck. 1992. Nature 359: 710.

    Article  CAS  Google Scholar 

  31. Kupperman, A., et al. 1993. Nature 365: 239.

    Article  Google Scholar 

  32. Li, H., X. Huang, and L. Chen. 1998. Direct imaging of the passivating film and microstructure of nanometer-scale SnO anodes in lithium rechargeable batteries. Electrochemical and Solid State Lett. 1: 241–243.

    Article  CAS  Google Scholar 

  33. Lin, H.-P., and C.-Y. Mou. 1996. “Tubules-within-a-tubule”hierarchical order of mesoporous molecular sieves in MCM-41. Science 273: 765.

    Article  CAS  Google Scholar 

  34. Lourie, O., D.M. Cox, and H.D. Wagner. 1998. Buckling and collapse of embedded carbon nanotubes. Phys. Rev. Lett. 81: 1638.

    Article  CAS  Google Scholar 

  35. Martin, T.P., U. Naher, H. Schaber, and U. Zimmerman. 1993. Clusters of fullerene molecules. Phys. Rev. Lett. 70: 3079.

    Article  CAS  Google Scholar 

  36. Martin, T.P., N. Malinowski, U. Zimmerman, U. Naher, and H. Schaber. 1993. Metal coated fullerene molecules and clusters. J. Chem. Phys. 99: 4210.

    Article  CAS  Google Scholar 

  37. McGraw, J.M., C.S. Bahn, P.A. Parilla, J.D. Perkins, D.W. Readey, D.S. Ginley. 1999. Li ion diffusion measurements in V2O5 and Li(Co1-xAlx)O2 thin-film battery cathodes. Electrochim. Acta 45 (1–2), 187–196.

    Article  CAS  Google Scholar 

  38. Nagaura T., and K. Tozawa. 1990. Lithium ion rechargeable battery. Progress in Batteries and Solar Cells Vol. 9.

    Google Scholar 

  39. Prigogine, I., and S. Rice. 1988. Advances in chemical physics 50, Parts 1 & 2. J. Wiley.

    Google Scholar 

  40. Rao, M.B., and S. Sircar. 1993. Gas Separation and Purification 7: 279.

    Article  CAS  Google Scholar 

  41. Rao, C.N.R., B.C. Satishkumar, and A. Govindaraj. 1997. Chem. Commun. 1581.

    Google Scholar 

  42. Reetz M.T., et al. 1995. Science 267: 367.

    Article  CAS  Google Scholar 

  43. Rohlfing, E.A., D.M. Cox, and A. Kaldor. 1984. Photoionization spectra and electronic structure of small iron clusters. J. Chem. Phys. 81: 3846.

    Article  CAS  Google Scholar 

  44. Rosen, A. 1998. A periodic table in three dimensions: A sightseeing tour in the nanometer world. In Advances in Quantum Chemistry, Vol. 30. February. New York: Academic Press.

    Google Scholar 

  45. Schwarz, R.B. 1998. Storage of hydrogen in powders with nanosized crystalline domains. In R&D status and trends.

    Google Scholar 

  46. Siegel, R.W., E. Hu, and M.C. Roco, eds. 1999. NSTC (National Science and Technology Council) Report. Nanostructure science and technology. Baltimore: International Technology Research Institute, World Technology (WTEC) Division. Web site: http://itri.loyola.edu/nano/IWGN.Worldwide.Study/. Also published by Kluwer Academic Publishers (1999).

  47. Soffer, A., J.E. Koresh, and S. Saggy. 1987. United States Patent 4685940.

    Google Scholar 

  48. Sony Corp. 1999. Energy Web site, http://www.sony-media.com/en/technical/lithium-ion.html.

  49. Stuckless, J.T., D.E. Starr, D.J. Bald, C.T. Campbell. 1997. Metal adsorption calorimetry and adhesion energies on clean single-crystal surfaces. J. Chem. Phys. 107: 5547.

    Article  CAS  Google Scholar 

  50. Sun, T., and J.Y Ying. 1997. Synthesis of microporous transition-metal-oxide molecular sieves by a supramolecular templating mechanism. Nature 389: 704.

    Article  CAS  Google Scholar 

  51. Swartz, S.L., M.M. Seabaugh, and W.J. Dawson. 1999. Nanostructured materials for electrochemical systems. Proc. Electrochem. Soc. 99–13.

    Google Scholar 

  52. Taylor, K.J., C.L. Pettiette-Hall, O. Cheshnovsky, and R.J. Smalley 1992. Ultraviolet photoelectron spectra of coinage metal clusters. J. Chem. Phys. 96: 3319.

    Article  CAS  Google Scholar 

  53. Trudeau, M.L., and J.Y. Ying. 1996. Nanostr. Mater. 7: 245.

    Article  CAS  Google Scholar 

  54. Tschope, A., and J. Ying. Nanostr. Mater. 4: 617.

    Google Scholar 

  55. Tschope, A.S., W. Liu, M. Flyzani-Stephanopoulos, and J.Y. Ying. 1995. Redox activity of nonstoichiometric cerium oxide-based nanocrystalline catalysts. J. Catal 157: 42.

    Article  CAS  Google Scholar 

  56. Volintine, B. 1999. Nanotechnology R&D supports DOE missions. In IWGN Workshop Proceedings, January 27–29 (private communication).

    Google Scholar 

  57. Yang, H., A. Kuperman, N. Coombs, S. Mamich-Afara, and G.A. Ozin. 1996. Synthesis of oriented films of mesoporous silica on mica. Nature 379: 703.

    Article  CAS  Google Scholar 

  58. Yeo, Y.Y., C.E. Watanaby, and D.A. King. 1995. Calorimetric measurement of the energy difference between two solid surface phases. Science 268: 1731.

    Article  CAS  Google Scholar 

  59. Ying, J.Y., and T. Sun. 1997. Research needs assessment on nanostructured catalysts. J. of Electroceramics 1 (3): 219.

    Article  CAS  Google Scholar 

  60. Applications: Energy and Chemicals Industries

    Google Scholar 

  61. Whitehead, A.H., J.M. Elliott, and J.R. Owen. 1999. Nanostructured tin for use as a negative electrode material in Li-ion batteries. J. Power Sources 81–82, 33–38.

    Article  Google Scholar 

  62. Zimmermann, U., N. Malinowski, A. Burkhardt, and T.P. Martin. 1995. Carbon 33: 995.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. C. Roco (IWGN Chair)R. S. Williams (private sector)P. Alivisatos (academe)

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cox, D., Picraux, S.T. (2000). Applications: Energy and Chemicals Industries. In: Roco, M.C., Williams, R.S., Alivisatos, P. (eds) Nanotechnology Research Directions: IWGN Workshop Report. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9576-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9576-6_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5416-6

  • Online ISBN: 978-94-015-9576-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics