Skip to main content

Independence of Fractional Flow Reserve of Hemodynamic Loading Conditions

  • Chapter
Coronary Pressure

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 195))

  • 84 Accesses

Abstract

In addition to feasibility and clinical relevance, reproducibility (or absence of variability) is another crucial characteristic of any new diagnostic test. A measurement which is either difficult to obtain, of little clinical relevance, or highly variable, would be clinical nonsense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Doucette JW, Corl PD, Payne HM, Flynn AE, Goto M, Nassi M, Segal J. Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation 1992; 85: 1899–1911.

    Article  PubMed  CAS  Google Scholar 

  2. Wilson RF, Wyche B, Christensen BV, Zimmer S, Laxson DD. Effects of adenosine on human coronary arterial circulation. Circulation 1990; 82: 1595–1606.

    Article  PubMed  CAS  Google Scholar 

  3. De Bruyne B, Stockbroeckx J, Demoor D, Heyndrickx GR, Kern MT. Role of side holes in guiding catheters: observations on coronary pressures and flow. Cath Cardiovasc Diagn 1994; 33: 145–152.

    Article  Google Scholar 

  4. Pijls NHJ, van Son JAM, Kirkeeide RL, De Bruyne B, Gould KL. Experimental basis of determining maximum coronary, myocardial and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after PTCA. Circulation 1993; 87: 1354–1367.

    Article  PubMed  CAS  Google Scholar 

  5. De Bruyne B, Baudhuin T, Melin JA, Pijls NHJ, Sys SU, Bol A, Paulus WJ, Heyndrickx GR, Wijns W. Coronary flow reserve calculated from pressure measurements in humans. Validation with positron emission tomography. Circulation 1994; 89: 1013–1022.

    Article  PubMed  Google Scholar 

  6. Gould KL, Lipscomb K, Hamilton GW. Physiological basis for assessing critical coronary stenosis: instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 1974; 33: 87–94.

    Article  PubMed  CAS  Google Scholar 

  7. Hoffman JIE. Maximum coronary flow and the concept of coronary vascular reserve. Circulation 1984; 70: 153–159.

    Article  PubMed  CAS  Google Scholar 

  8. Wilson RF, Laughlin DE, Ackell PH, Chilian WM, Holida MD, Hartley CJ, Armstrong ML, Marcus ML, White CW. Transluminal, subselective measurement of coronary artery blood flow velocity and vasodilator reserve in man. Circulation 1985; 72: 82–92.

    Article  PubMed  CAS  Google Scholar 

  9. Mancini G.B.J., McGillem M.J., DeBoe S.F., Gallangher K.P. The diastolic hyperemic flow vs pressure relation: a new index of coronary stenosis severity and flow reserve. Circulation 1989; 80: 941–950.

    Article  PubMed  CAS  Google Scholar 

  10. Mancini GBJ, Cleary RM, DeBoe SF, Moore NB, Gallagher KP. Instantaneous hyperemic flow-vs-pressure slope index. Microsphere validation of an alternative to measures of coronary flow reserve. Circulation 1991; 84: 862–870.

    Article  PubMed  CAS  Google Scholar 

  11. Cleary RM, Aron D, Moore NB, De Boe SF, Mancini GBJ. Tachycardia, contractility and volume loading alter conventional indexes of coronary flow reserve, but not the instantaneous hyperemic flow-versus-pressure slope index. J Am Coll Cardiol 1992; 20: 1261–1269.

    Article  PubMed  CAS  Google Scholar 

  12. Di Mario C, Krams R, Gil R, Serruys PW. Slope of the instantaneous hyperemic diastolic coronary flow velocity-pressure relation. A new index for assessment of the physiological significance of coronary stenosis in humans. Circulation 1994; 90: 1215–1224.

    Article  PubMed  Google Scholar 

  13. Kondo M, Azuma A, Yamada H, Kohno H, Kawata K, Tatsukawa H, Ohnishi K, Kohno Yn Asayama J, Nakagawa M. Estimation of coronary flow reserve with the instantaneous flow velocity versus pressure relation: A new index of coronary flow reserve independent of perfusion pressure. Am Heart J 1996; 132: 1127–1134

    Article  PubMed  CAS  Google Scholar 

  14. Haase J, Di Mario C, Slager CJ, van der Giessen WJ, den Boer A, de Feyter PJ, Reiber JHC, Verdouw PD, Serruys PW. In vitro validation of on-line and off-line geometric coronary measurement using insertion of stenosis phantoms in porcine coronary arteries. Cath Cardiovasc Diagn 1992; 27: 16–27.

    Article  CAS  Google Scholar 

  15. Emanuelsson H, Dohnal M, Lamm C, Tenerz. Initial experiences with a miniaturized pressure transducer during coronary angioplasty. Cath Cardiovasc Diagn 1991; 24: 137–143.

    Article  CAS  Google Scholar 

  16. De Bruyne B, Pijls NHJ, Paulus WJ, Vantrimpont PJ, Sys SU, Heyndrickx GR. Transstenotic coronary pressure gradient measurement in humans: in vitro and in vivo evaluation of a new pressure monitoring angioplasty guide wire. J Am Coll Cardiol 1993; 22: 119–126.

    Article  PubMed  Google Scholar 

  17. Drexler H, Zeiher AM, Wollslager H, Meinertz T, Just H, Bonzel T. Flow-dependent artery dilatation in humans. Circulation 1989; 80: 466–474.

    Article  PubMed  CAS  Google Scholar 

  18. McGinn Al, White CW, Wilson RF. Interstudy variability of coronary flow reserve: influence of heart rate, arterial pressure and ventricular preload. Circulation 1990; 1: 1319–1330.

    Article  Google Scholar 

  19. Cleary RM, Moore NB, De Boe SF, Mancini GBJ. Sensitivity and reproducibility of the instantaneous hyperemic flow-versus-pressure slope index compared to coronary flow reserve for the assessment of stenosis severity. Am Heart J 1993; 126: 57–65.

    Article  PubMed  CAS  Google Scholar 

  20. Rossen JD, Winniford MD. Effect of increases in heart rate and arterial pressure on coronary flow reserve in humans. J Am Coll Cardiol 1993; 21: 343–348.

    Article  PubMed  CAS  Google Scholar 

  21. Hintze TH, Vatner SF. Reactive dilatation of large coronary arteries in conscious dogs. Circ Res 1984; 54: 50–57.

    Article  PubMed  CAS  Google Scholar 

  22. Di Mario C, Gil R, Serruys PW. Long-term reproducibility of coronary flow velocity measurements in patients with coronary artery disease. Am J Cardiol 1995; 75: 1177–1180.

    Article  PubMed  Google Scholar 

  23. Higgins CB, Vatner SF, Franklin D, Braunwald E. Extent of regulation of the heart’s contractile state in the conscious dog by alteration in the frequency of contraction. J Clin Invest 1973; 52: 1187–1196.

    Article  PubMed  CAS  Google Scholar 

  24. Gewirtz H. Fractional Flow Reserve. Circulation 1996; 94: 2306 (correspondence)

    PubMed  CAS  Google Scholar 

  25. Pijls NHJ, Van Gelder B, Van der Voort P, Peels KH, Bracke FALE, Bonnier HJRM, El Gamal MIH. Fractional Flow Reserve. Circulation 1996; 94: 2306–2307 (correspondence)

    Google Scholar 

  26. Gould KL. Pressure-flow characteristics of coronary stenoses in unsedated dogs at rest and during coronary vasodilation. Circ Res 1978; 43: 242–253.

    Article  PubMed  CAS  Google Scholar 

  27. Sun Y, Most AS, Ohley W, Gewirtz H. Estimation of instantaneous blood flow through a rigid, coronary artery stenosis in anaesthetized domestic swine. Cardiovasc Res 1983; 17: 499–504.

    Article  PubMed  CAS  Google Scholar 

  28. De Bruyne B, Baudhuin T, Melin JA, Pijls NHJ, Sys SU, Bol A, Paulus WJ, Heyndrickx GR, Wijns W. Coronary flow reserve calculated from pressure measurements in humans. Validation with positron emission tomography. Circulation 1994; 89: 1013–1022.

    Article  PubMed  Google Scholar 

  29. Pijls NHJ, De Bruyne B. Coronary pressure measurement and fractional flow reserve. Heart 1998; 80: 539–542.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pijls, N.H.J., De Bruyne, B. (2000). Independence of Fractional Flow Reserve of Hemodynamic Loading Conditions. In: Coronary Pressure. Developments in Cardiovascular Medicine, vol 195. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9564-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9564-3_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5398-5

  • Online ISBN: 978-94-015-9564-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics