Skip to main content

Advances in Global Seismic Event Location

  • Chapter
Advances in Seismic Event Location

Part of the book series: Modern Approaches in Geophysics ((MAGE,volume 18))

Abstract

We review the fundamentals of earthquake location and document the evolution of global one-dimensional models for travel times and velocity structure. We discuss in detail the issues of location uncertainty, weighting, corrections (station, source, and path), and data quality. Nuclear monitoring concerns have brought about an increased need for improvements in global and regional seismic event location capability. Several recent studies highlight the value of utilizing information from multiple phases and global 3-D models to improve event locations. Further progress in the use of 3-D models for high-accuracy locations will require substantial efforts to improve the quality of the arrival time data used to determine the 3-D structure of the Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antolik, M., G. Ekström, and A. Dziewonski (2000) Global event location with full and sparse datasets using three-dimensional models of mantle P wave velocity, J. Geophys. Res., submitted.

    Google Scholar 

  • Bijwaard, H. and W. Spakman (1999) Fast kinematic ray tracing of first-and later-arriving global seismic phases, Geophys. J. Int. 139, 359–369.

    Article  Google Scholar 

  • Bijwaard, H., W. Spakman, and E.R. Engdahl (1998) Closing the gap between regional and global travel time tomography, J. Geophys. Res. 103, 30055–30078.

    Article  Google Scholar 

  • Billings, S.D., M.S. Sambridge, and B.L.N. Kennett (1994) Errors in hypocenter location: picking, model, and magnitude dependence, Bull. Seismol. Soc. Am. 84, 1978–1990.

    Google Scholar 

  • Boeve, R., W. Spakman, H. Bijwaard, and E.R. Engdahl (1999) 3-D earthquake location with grid search methods: Application to nuclear explosions (abstract), International Workshop on Tomographie Imaging of 3-D Velocity Structures and Accurate Earthquake Location (PAPHOS99), Platres, Cyprus, 5–9 July 1999.

    Google Scholar 

  • Bolt, B.A. (1960) The revision of earthquake epicentres, focal depths and origin times using a high-speed computer, Geophys. J. Roy. Astr. Soc. 3, 433–440.

    Article  Google Scholar 

  • Buland, R. (1976) The mechanics of locating earthquakes, Bull. Seism. Soc. Am. 66, 173–187.

    Google Scholar 

  • Buland, R. (1986) Uniform reduction error analysis, Bull. Seism. Soc. Am. 76, 217–230.

    Google Scholar 

  • Buland, R., and C.H. Chapman (1983) The computation of seismic travel times, Bull. Seism. Soc. Am. 73, 1271–1302.

    Google Scholar 

  • Cleary, J., and A.L. Hales (1966) An analysis of the travel times of P waves to North American stations, in the distance range 32° to 100°, Bull. Seism. Soc. Am. 56, 467–489.

    Google Scholar 

  • Dziewonski, A.M. and D.L. Anderson (1981) Preliminary reference Earth model, Phys. Earth Planet. Inter. 25, 297–356.

    Article  Google Scholar 

  • Dziewonski, A.M. and D.L. Anderson (1983) Travel times and station corrections for P waves at teleseismic distances, J. Geophys. Res. 88, 3295–3314.

    Article  Google Scholar 

  • Engdahl, E.R. (1998) Development of an archive of seismic ground truth events globally in support of monitoring under the CTBT, Proc. 20th Annual Seis. Res. Symp. on Monitoring a Comprehensive Test Ban Treaty (CTBT), Santa Fe, NM, Sept. 1998, 11–18.

    Google Scholar 

  • Engdahl, E. R., and R.H. Gunst (1966) Use of a high speed computer for the preliminary determination of earthquake hypocenters, Bull. Seism. Soc. Am. 56, 325–336.

    Google Scholar 

  • Engdahl, E. R., and S. Billington (1986) Focal depth determination of central Aleutian earthquakes, Bull. Seism. Soc. Am. 76, 77–93.

    Google Scholar 

  • Engdahl, E. R., and E.A. Bergman (1992) The International Seismological Observing Period in Africa: Tectonophys. 209, 1–16.

    Article  Google Scholar 

  • Engdahl, E.R., R. van der Hilst, and R. Buland (1998) Global teleseismic earthquake relocation with improved travel times and procedures for depth determination, Bull. Seism. Soc. Am. 88, 722–743.

    Google Scholar 

  • Evernden, J.F. (1969) Precision of Epicenters obtained by small numbers of world-wide stations, Bull. Seism. Soc. Am. 59, 1365–1398.

    Google Scholar 

  • Flinn, E.A. (1960) Local earthquake location with an electronic computer, Bull. Seism. Soc. Am. 50, 467–470.

    Google Scholar 

  • Flinn, E.A. (1965) Confidence regions and error determinations for seismic event location, Rev. Geophys. 3, 157–185.

    Article  Google Scholar 

  • Geiger, L. (1912) Probability method for the determination of earthquake epicenters from the arrival time only, Bull. St. Louis Univ. 8, 60–71.

    Google Scholar 

  • Gomberg, J.S., K.M. Shedlock, and S.W. Roecker (1990) The effect of S-wave arrival times on the accuracy of hypocenter estimation, Bull. Seism. Soc. Am. 80, 1605–1628.

    Google Scholar 

  • Herrin, E. and J. Taggart (1968) Regional variations in P travel times, Bull. Seism. Soc. Am. 58, 1325–1337.

    Google Scholar 

  • Herrin, E., W. Tucker, J. Taggart, D.W. Gordon, and J.L. Lobdell (1968) Estimation of surface focus P travel times, Bull. Seism. Soc. Am. 58, 1273–1291.

    Google Scholar 

  • Husebye, E.S. and A.M. Dainty (1996) Monitoring a Comprehensive Test Ban Treaty, Kluwer Academic Publishers, Dordrecht, 864 pp.

    Book  Google Scholar 

  • Jeffreys, H. (1939) Theory of Probability, Oxford University Press, London.

    Google Scholar 

  • Jeffreys, H., and K.E. Bullen (1940) Seismological Tables, British Association for the Advancement of Science, London.

    Google Scholar 

  • Jordan, T.H. and K.A. Sverdrup (1981) Teleseismic location techniques and their application to earthquake clusters in the south-central pacific, Bull. Seism. Soc. Am. 71, 1105–1130.

    Google Scholar 

  • Kennett, B.L.N. and E.R. Engdahl (1991) Traveltimes for global earthquake location and phase identification, Geophys. J. Int. 105 429–465.

    Article  Google Scholar 

  • Kennett, B.L.N., E.R. Engdahl, and R. Buland (1995) Constraints on seismic velocities in the Earth from traveltimes, Geophys. J. Int. 122, 108–124.

    Article  Google Scholar 

  • Klein, F.W. (1978) Hypocenter Location Program HYPOINVERSE, U.S. Geological Survey Open-File Report 78–694, 113 pp.

    Google Scholar 

  • Lee, W.H.K., and J.C. Lahr (1975) HYPO71 (revised): A computer program for determining hypocenter, magnitude, and first motion pattern of local earthquakes, U.S. Geological Survey Open-File Report 75–311, 114 pp.

    Google Scholar 

  • Morelli, A. and A.M. Dziewonski (1993) Body wave traveltimes and a spherically symmetric P- and S-wave velocity model, Geophys. J. Int. 112, 178–194.

    Article  Google Scholar 

  • Röhm, A.H.E., J. Trampert, H. Paulssen, and R.K. Snieder (1999) Bias in reported seismic arrival times deduced from the ISC Bulletin, Geophys. J. Int. 137, 163–174.

    Article  Google Scholar 

  • Smith, G.P. and G. Ekstrom (1996) Improving teleseismic earthquake locations using a three-dimensional Earth model, Bull. Seism. Soc. Am. 86, 123–132.

    Google Scholar 

  • Thurber, C., F. Haslinger, and C. Trabant (1999) Testing event location capability with ground truth events in Kazakstan, Proc. 21st Seismic Research Symposium, 283–293.

    Google Scholar 

  • VanDecar, J.C., and R.S. Crosson (1990) Determination of teleseismic relative phase arrival times using multi-channel cross-correlation and least squares, Bull. Seism. Soc. Am. 80, 150–159.

    Google Scholar 

  • van der Hilst, R.D., and E.R. Engdahl (1992), Step-wise relocation of ISC earthquake hypocenters for linearized tomographic imaging of slab structure, Phys. Earth Planet. Inter. 75, 39–54.

    Article  Google Scholar 

  • van der Hilst, R.D., S. Widiyantoro, and E.R. Engdahl (1997). Evidence for deep mantle circulation from global tomography, Nature 386, 578–584.

    Article  Google Scholar 

  • Zoback, M.L. and M.D. Zoback (1980) State of stress in the conterminous United States, J. Geophys. Res. 85, 6113–6156.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Thurber, C.H., Engdahl, E.R. (2000). Advances in Global Seismic Event Location. In: Thurber, C.H., Rabinowitz, N. (eds) Advances in Seismic Event Location. Modern Approaches in Geophysics, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9536-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9536-0_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5498-2

  • Online ISBN: 978-94-015-9536-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics