Skip to main content

Studies on Potential Use of Cyanobacterium Westiellopsis for Bioremediation of Copper

  • Chapter
Book cover Environmental Stress: Indication, Mitigation and Eco-conservation
  • 220 Accesses

Abstract

The study of the effect of copper is of great significance as this has become a wide spread pollutant due to its use as algicide and fungicide in agriculture. Role of rapid industrialisation, urbanisation, mining etc. in increasing copper pollution cannot be ignored. Nature as well as individual organisms have an inherent capacity for maintaining an ecological balance but if the input/generation of these xenobiotic substances or pollutants (like heavy metals) increase above a critical level, they lead to lethal, toxic (acute or chronic) effects depending upon their concentration. In animals excessive intake of copper results in eczema, eye inflammation, mucosal irritation, depression, hepatic, renal and capillary damage whereas in plants higher levels of copper affects osmotic permeability, Hill reactions and causes degradation of chlorophyll and other pigments (Cedeno et al., 1972, 1974; Overnell, 1975). For sustainable development, the heavy metals of aquatic environment can be removed both by chemical and biological means, bioremediation being more ecofriendly. Cyanobacterial biosorption and bioaccumulation has added advantage of CO2 removal — the causal agent of global warming. The preference for photosynthetic prokaryotes in bioremediation is due to their short generation time, access for genetic manipulation and presence of large amount of extracellular metal attractants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Casatorday, K., Gombos, Z. & Szalontaise, B. 1984. Manganese and cobalt toxicity in chlorophyll biosynthesis. Proceedings of National Academy of Sciences 81: 476–478.

    Article  Google Scholar 

  • Cedeno, M. & Swader, J.S. 1974. Studies of copper toxicity in Chlore la. Weed Science 22: 443–449.

    Google Scholar 

  • Cedeno, M., Swader, J.S. & Health, R.L. 1972. The cupric ion as an inhibitor of photosynthetic electron transport in isolated chloroplasts. Plant Physiology 50: 698–700.

    Article  Google Scholar 

  • Chang, C. & Sibley, T.H. 1993. Accumulation and transfer of copper by Oocystis pusillo. Bulletin of Environmental Contamination & Toxicology 50: 689–695.

    Article  CAS  Google Scholar 

  • De, A.K., Sen, A.K., Modak, D.P. & Jana, S. 1985. Studies of toxic effects of Hg(II) on Pistia stratiotes. Water Air & Soil Pollution 24: 351–360.

    Article  CAS  Google Scholar 

  • Elstener, E.L. & Osswald, W. 1984. Erhtensterben in ‘Reinluftgebieten’ Strukturresistenzverlust. Naturwissenschaftliche Rundschau 37: 52–61.

    Google Scholar 

  • Hellebust, J.A. & Craige, J.W. 1978. In Handbook of Physiological and Biochemical Methods. Cambridge University Press, Cambridge.

    Google Scholar 

  • Hughes, E.O., Groham, P.R. & Zehnder 1958. Toxicity of uni-algal cultures of Microcystis aeroginosum. Canadian Journal of Microbiology 4: 225–236.

    Article  CAS  Google Scholar 

  • Jensen, E.T., Baxter, M., Joseph, W. & Jani, V. 1982. Uptake of heavy metals by Plectonames boryanum into cellular compounds especially poly-phosphate bodies. Environmental Pollution (Series A) 27: 119–127.

    Article  CAS  Google Scholar 

  • Lee, L.H., Lustigman, B., Chu, I.U. & Jou, H.L. 1991. Effect of aluminium and pH on the growth of Anacystis nidulens. Bulletin of Environmental Contamination & Toxicology 46: 720–726.

    Article  CAS  Google Scholar 

  • Lee, L.H., Lustigman, B., Chu, LU. & Hsu, S. 1992. Effect of lead and cobalt on the growth of Anacystis nidulens. Bulletin of Environmental Contamination & Toxicology 48: 230–236.

    Article  CAS  Google Scholar 

  • Lee, L.H., Lustigman, B. & Maccari, J. 1993. Effect of copper on the growth of Anacystis nidulens. Bulletin of Environmental Contamination & Toxicology 50: 600–607.

    Article  CAS  Google Scholar 

  • Olafson, R.W., Loya, S. & Sim, R.G. 1980. Physiological parameters of prokaryotic metallothionein induction. Biochemistry & Biophysics Research Communication 95: 1495–1503.

    Article  CAS  Google Scholar 

  • Olafson, R.W. 1984. Prokaryotic metallothionein. Journal of Peptide Protein Research 24: 303–308.

    Article  CAS  Google Scholar 

  • Olafson, R.W., McCubbin, W.D. & Kay, C.M. 1988. Primary and secondary structural analysis of unique prokaryotic metallothionein from Synechococcus species cyanobacterium. Biochemistry Journal 251: 691–699.

    CAS  Google Scholar 

  • Overnell, J. 1975. The effect of heavy metals on photosynthesis and loss of cell potassium in two species of marine algae. Marine Biology 29: 99–103.

    Article  CAS  Google Scholar 

  • Rauser, W.E. 1990. Phytochelatins. Annual Review in Biochemistry 59: 61–86.

    Article  CAS  Google Scholar 

  • Singh, D.P. 1985. Copper transport in the unicellular cyanobacterium Anasystis nidulens. Journal of General and Applied Microbiology 60: 193–196.

    Google Scholar 

  • Singh, S.P. & Verma, S.K. 1988. Heavy metal uptake in the cyanobacterium Nostoc calcicola. Journal of Indian Botanical Society 67: 74–77.

    CAS  Google Scholar 

  • Sherman, D.M. & Sherman, L.A. 1983. Effect of iron deficiency and iron restoration on the ultrastructure of Anacystis nidulens. Journal of Bacteriology 156: 393–401.

    CAS  Google Scholar 

  • Vos-De, C.H.R. & Schat, H. 1991. Free radical and heavy metal tolerance. In Ecological Responses to Environmental Stresses : 22–30. Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Wanner, G., Henkelmann, G., Schmidt, A. & Kost, H.P. 1986. Nitrogen and iron starvation of the cyanobacterium Synechococcus 6301 — an ultrastructural, morphological and biochemical comparison. Zeischrift Naturforsch 41C: 741–750.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Taneja, L., Fatma, T. (2000). Studies on Potential Use of Cyanobacterium Westiellopsis for Bioremediation of Copper. In: Yunus, M., Singh, N., de Kok, L.J. (eds) Environmental Stress: Indication, Mitigation and Eco-conservation. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9532-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9532-2_33

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5503-3

  • Online ISBN: 978-94-015-9532-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics