Skip to main content

Segregation of Polydisperse Granular Media in the Presence of a Temperature Gradient

  • Conference paper

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 81))

Abstract

Granular media are examined with the focus on polydisperse mixtures in the presence of two localized heat-baths. If the two driving energies are similar, the large particles prefer to stay in the ‘cold’ regions of the system — as far away from the energy source as possible. If one of the temperatures is larger than the other, the cold region is shifted towards the colder reservoir; if the temperature of one source is much higher, a strong, almost constant temperature gradient builds up between the two reservoirs and the large particles are found close to the cold reservoir. Furthermore, clustering is observed between the heat reservoirs, if dissipation is strong enough.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Herrmann, H.J., Hovi, J.-P., and Luding, S., (eds.): Physics of dry granular media,NATO ASI Series E 350 Kluwer Academic Publishers, Dordrecht, 1998.

    Google Scholar 

  2. Chowhan, Z. T.: Segregation of particulate solids Part I., Pharm. Technol. 19 (1995), 56.

    Google Scholar 

  3. Knight, J. B., Jaeger, H. M., and Nagel, S. R.: Vibration-induced size separation in granular media: The convection connection, Phys. Rev. Lett. 70 [24] (1993), 3728–3731.

    Article  ADS  Google Scholar 

  4. Duran, J., Mazozi, T., Clement, E., and Rajchenbach, J.: Size segregation in a two-dimensional sandpile: convection and arching effects, Phys. Rev. E 50 [6] (1994), 5138–5141.

    Article  ADS  Google Scholar 

  5. Dippel, S. and Luding, S.: Simulations on size segregation: Geometrical effects in the absence of convection, J. Phys. /France 5 (1995), 1527–1537.

    Article  Google Scholar 

  6. Rosato, A.D. Strandburg, K.J., Prinz, F., and Swendsen, R. H.: Why the brazil nuts are on top: Size segregation of particulate matter by shaking, Phys. Rev. Lett. 58[10] (1987), 1038–1041.

    Google Scholar 

  7. Clement, E., Rajchenbach, J., and Duran, J.: Mixing of a granular material in a bidimensional rotating drum, Europhys. Lett. 30 [1] (1995), 7–12.

    Google Scholar 

  8. Cantelaube, F., Duparcmeur, Y. L., Bideau, D., and Ristow, G. H.: Geometrical analysis of avalanches in a 2d drum, J. Phys. /France 5 (1995), 581–596.

    Article  Google Scholar 

  9. Arnarson, B. and Willits, J. T.: Thermal diffusion in binary mixtures of smooth, nearly elastic spheres with and without gravity, Phys. Fluids 10 (1998), 1324.

    Google Scholar 

  10. Jenkins, J. T. and Richman, M. W.: Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks, Phys Fluids 28 (1985), 3485–3494.

    Article  ADS  MATH  Google Scholar 

  11. Lun, C. K. K.: Kinetic theory for granular flow of dense, slightly inelastic, slightly rough spheres, J. Fluid Mech. 233 (1991), 539–559.

    Article  ADS  MATH  Google Scholar 

  12. Goldshtein, A. and Shapiro, M.: Mechanics of collisional motion of granular materials. Part 1. General hydrodynamic equations, J. Fluid Mech. 282 (1995) 75–114.

    Google Scholar 

  13. Luding, S., Huthmann, M., McNamara, S., and Zippelius, A.: Homogeneous cooling of rough dissipative particles: theory and simulations, Phys. Rev. E 58 (1998), 3416–3425.

    Article  ADS  Google Scholar 

  14. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.: Numerical recipes, Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  15. Cause, P. J. and Mareschal, M.: Heat transfer in a gas between parallel plates: moment method and molecular dynamics, Phys. Rev. A 38 (1988), 4241.

    Article  ADS  Google Scholar 

  16. Mareschal, M., Monsour, M., Sonnino, G., and Kestamont, E.: Dynamics structure factor in a nonequilibrium fluid: a molecular-dynamics approach, Phys. Rev. A 45 (1992), 7180.

    Article  ADS  Google Scholar 

  17. Lubachevsky, B. D.: How to simulate billards and similar systems, J. Comp. Phys. 94 [2] (1991), 255.

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Luding, S., Strauss, O., McNamara, S. (2000). Segregation of Polydisperse Granular Media in the Presence of a Temperature Gradient. In: Rosato, A.D., Blackmore, D.L. (eds) IUTAM Symposium on Segregation in Granular Flows. Solid Mechanics and Its Applications, vol 81. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9498-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9498-1_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5556-9

  • Online ISBN: 978-94-015-9498-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics