Advertisement

Metallogenesis and hydrocarbon generation in northern Mount Isa Basin, Australia: Implications for ore grade mineralization

  • M. Glikson
  • M. Mastalerz
  • S. D. Golding
  • B. A. McConachie
Chapter

Abstract

Maturation studies of organic matter provide a powerful tool in the reconstruction of thermal histories of sedimentary basins. Of particular interest are basins where high grade ore deposits are associated with various types of organic matter. Organic matter is known to have an affinity for trace elements in general, and metals in particular. Studies of soils (Cheshire et al., 1977; Suess, 1979), peat deposits (Giese and Briese, 1977; Brumsack, 1980) and black shales have clearly shown that certain organic compounds adsorb metals, and/or form organo-metallic complexes. The direct correlation between C and metal concentrations has been documented in many studies (Mo et al., 1973; Leventhal, 1981; Glikson et al., 1985a, b).

Keywords

Organic Matter Total Organic Carbon Black Shale High Reflectance Hydrocarbon Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aizawa, J. (1990) Palaeotemperatures from fluid inclusions and coal rank of carbonaceous material of Tertiary formations in northeast Kyushu, Japan. Jpn. Earth Sci. 85: 145–154.Google Scholar
  2. Barker, C.E. (1991) Implications for organic maturation studies of evidence for a geologically rapid increase and stabilization of vitrinite reflectance at peak temperature: Cerro Prieto geothermal system, Mexico. Am. Assoc. Petrol. Geolog. Bull. 75: 1852–1863.Google Scholar
  3. Barker, C.E. and Pawlewicz, M.J. (1986) The correlation of vitrinite reflectance with maximum temperature in humic organic matter. In: G. Bunterbarth and L. Stegema (eds), Palaeogeothermics, Springer Verlag, Berlin, pp. 79–93.CrossRefGoogle Scholar
  4. Barker, C.E. and Goldstein, R.H. 1990: A fluid inclusion technique for determining maximum temperature in calcite and its comparison to the vitrinite reflectance geothermometer. Geology 18: 1003–1006.CrossRefGoogle Scholar
  5. Beveridge, T.J., Meloche, J.D., Fyfe, W.S. and Murray, R.G.E. (1983) Diagenesis of metals chemically complexed to bacteria: laboratory formation of metal phosphates, sulphides and organic condensates in artificial sediments. Appl. Environ. Microbiol. March issue 1094–1108.Google Scholar
  6. Broadbent, G.C., Myers, R.E. and Wright, J.V. (1996) Geology and origin of shale-hosted Zn-Pb-Ag mineralisation in Century mine, nortwest Queensland. In: MIC ‘96’: New Developments in MetallogeneticResearch in the McArthur-Mt Isa-Cloncurry Minerals Province. Proceedings Symposium 24–27.Google Scholar
  7. Brooks, J.D. and Taylor, G.H. (1968) The formation of some graphitizing carbons. In: P.L. Walker (ed.), Chemistry and Physics of Carbon. Marcel Dekker: 243–286.Google Scholar
  8. Brumsack, H.J. (1980) Geochemistry of Cretaceous black shales from the Atlantic ocean. Chem. Geol. 31: 1–25.CrossRefGoogle Scholar
  9. Cathles, L.M. and Smith, A.T. (1983) Thermal constrains on the formation of Mississippi Valley-Type lead-zinc deposits and their implications for episodic basin dewatering and deposit genesis. Econ. Geol. 78: 983–1002.CrossRefGoogle Scholar
  10. Cheshire, M.V., Berrow, M.L., Goodman, B.A. and Mundie, C.M. (1977) Metal distribution and nature of some Cu, Mn and V complexes in humic and fulvic acid fractions of soil organic matter. Geochim. Cosmochim. Acta. 41: 1131–1138.CrossRefGoogle Scholar
  11. Crick, I.H. (1992) Petrological and maturation characteristics of organic matter from Middle Proterozoic McArthur Basin, Australia. Aust. Jo. Earth Sci. 39: 501–519.CrossRefGoogle Scholar
  12. Curiale, J.A. (1993) Occurrence and significance of metals in solid bitumens: An organic geochemical approach. In: H. Kucha and P. Landeis (eds) Bitumens in Ore Deposits. Springer Verlag, Berlin, pp. 461–473.CrossRefGoogle Scholar
  13. Degens, E.T. and Ittekott, V. (1982) In-situ metal staining of biological membranes in sediments. Nature. 298: 262–264.Google Scholar
  14. Ferguson, J. and Bubela, B. (1974) The concentration of Cu(ii) and Zn(ii) from aqeous solution by particulate algal matter. Chem. Geol. 13: 163–186.CrossRefGoogle Scholar
  15. Ferris, F.G., Beveridge, T.J. and Fyfe, W.S. (1986) Iron-silica crystallite nucleation by bacteria in geothermal sediment. Nature. 320: 609–615.CrossRefGoogle Scholar
  16. Giese, J.P. and Briese, L.A. (1977) Metals associated with organic carbon extracted from Okefenokee swamp water. Chem. Geol. 20: 109–120.CrossRefGoogle Scholar
  17. Gize, A.P. (1989) Application of ore-hydrocarbon associations. Ann. Rev. Int. Assoc. Econom. Geol. ( IAEG ), Dublin: 105–108.Google Scholar
  18. Glikson, A.Y. (1996) Mega-impacts and mantle episodes: testing possible correlations. Aust. Geol. Surv. Org. (AGSO) J. Aust. Geol. Geophys. 16: 587–607.Google Scholar
  19. Glikson, M. and Taylor, G.H. (1986) Cyanobacterial mats; major contributors to the organic matter in Toolebuc Formation oil shales. J. Geol. Soc. Aust. Sp. Publ. No. 12: 276–286.Google Scholar
  20. Glikson, M., Chappell, B.A., Freeman, R. and Webber, E. (1985a) Trace element-organic associations in oil shales. Chem. Geol. 53: 155–174.CrossRefGoogle Scholar
  21. Glikson, M., Gibson, D.L. and Philp, R.P. (1985b) Organic matter in Australian oil shales and other Lower Palaeozoic shales. Chem. Geol. 51: 175–191.CrossRefGoogle Scholar
  22. Glikson, M., Lindsay, K. and Saxby, J.D. (1989) The green alga Botryococcus—a source of hydrocarbons through the ages. Org. Geochem. 14: 595–608.CrossRefGoogle Scholar
  23. Glikson, M., Taylor, D. and Morris, D.G. (1992) Petroleum source rock studies in Proterozoic and Lower Palaeozoic sedimentary basins in Australia, and the maturation path of alginite. Org. Geochem. 18: 881–897.CrossRefGoogle Scholar
  24. Goodarzi, F. and Gentziz, T. (1990) The lateral and vertical reflectance and petrological variation in a heat-effected bituminous coal seam from southeastern British Columbia, Canada. Int. J. Coal Geol. 15: 317–339.CrossRefGoogle Scholar
  25. Gorter, J.D. (1996) Speculation on the origin of Bedout High — a large, circular structure of pre Mesozoic age in the offshore Canning Basin. Petrol. Expl. Soc. Aust. News. February—March issue, 1996: 4 pp.Google Scholar
  26. Grieve, R.A.F. (1991) Terrestrial impact; the record in the rocks. Geological Survey of Canada, Ottawa, Canada. Meteoritics. 26: 175–151.CrossRefGoogle Scholar
  27. Grieve, R.A.F. and Masaitis, V.L. (1994) The economic potential of terrestrial impact craters. Int. Geol. Rev. 36: 105–151.CrossRefGoogle Scholar
  28. Guilbert, J.M. and Park, C.F. (1986) The Geology of Ore Deposits. Freeman and Co., New York.Google Scholar
  29. Horikoshi, T., Nakajima, A. and Sakaguchi, T. (1979) Uptake of uranium by Chlorella regularis. Agric. Biol. Chem. 43: 617–623.CrossRefGoogle Scholar
  30. Kisch, H.J. and Taylor, G.H. (1966) Metamorphism and alteration near an intrusive-coal contact. Econ. Geol. 61: 343–361.CrossRefGoogle Scholar
  31. Lanigan, K., Hibbird, S., Menpes, S. and Torkington, J. (1994) Petroleum exploration in the Proterozoic Beetaloo sub basin, Northern Territory. Aust. Petrol. Expl. Assoc. J. 34: 674–691.Google Scholar
  32. Laughland, M.M. and Underwood, M.B. (1993) Vitrinite reflectance and estimates of palaeotemperature within the upper Shimoto Group, Muroto Peninsula, Shikpku, Japan. Geol. Soc. Am. Sp. Publ. 273: 25–43.Google Scholar
  33. Leventhal, J.S. (1981) Pyrolysis gas chromatography — mass spectrometry characterise organic matter and its relationship to uranium content of Appalachian Devonian black shales. Geochim. Cosmochim. Acta. 45: 883–889.CrossRefGoogle Scholar
  34. Mancuso, J.J., Frizado, J., Stevenson, J., Truskoski, P. and Kneller, W. (1993) Paragenetic relationship of vein pyrobitumen in the Panel mine, Elliot Lake uranium district, Ontario, Canada. In: J. Parnell, H. Kucha and P. Landeis (eds.) Bitumens in Ore Deposits. Springer Verlag, Berlin, pp. 335–349.Google Scholar
  35. Mastalerz, M. and Jones, J.M. (1988) Coal rank variation in the Intrasudetic Basin, SW Poland. Int. J. Coal Geol. 10: 79–97.CrossRefGoogle Scholar
  36. Mauk, J.L. and Hieshima, G.B. (1992) Organic matter and copper mineralization at White Pine, Michigan, USA. Chem. Geol. 99: 189–211.CrossRefGoogle Scholar
  37. McConachie, B.A. and Dunster, J.N. (1996) Sequence stratigraphy of the Bowthorn block in the northern Mount Isa Basin, Australia: implications for base-metal mineralization process. Geology. 24: 155–158.CrossRefGoogle Scholar
  38. McConachie, B.A., Barlow, M.G., Dunster, J.N., Meaney, R.A. and Schap, A.D. (1993) The Mount Isa Basin — definition, structure and petroleum geology. Aust. Petrol. Expl. Assoc. (APEA) J. 33: 237–257.Google Scholar
  39. Mo, T., Suttle, A.D. and Sackett, W.M. (1973) Uranium concentrations in marine sediments. Geochim. Cosmochim. Acta. 37: 35–51.CrossRefGoogle Scholar
  40. Monson, B. and Parnell, J. (1992) Metal organic relationships from the Irish Carboniferous. Chem. Geol. 99: 125–137.CrossRefGoogle Scholar
  41. O’Dea, M.G., Lister, G.S., MacCready, T. et al. (1997) Geodynamic evolution of the Proterozoic Mount Isa terrain. Geol. Soc. Sp. Publ. 121: 99–122.CrossRefGoogle Scholar
  42. Page, R.W. and Sweet, I.P. (1998) Geochronology of basin phases in the western Mount Isa Basin inlier, and correlation with McArthur Basin. Aust. J. Earth Sci. 45: 219–231.CrossRefGoogle Scholar
  43. Pearcy, E.C. and Burruss, R.C. (1991) Hydrocarbons and gold mineralisation in the hot-spring deposit at Cherry Hill, California. In: Simoniet B.R.T. (ed.) Organic Matter Alteration in Hydrothermal Systems. Applied Geochem. No. 5, pp. 117–137.Google Scholar
  44. Plumb, K.A. and Derrick, G.M. (1975) Geology of the Proterozoic rocks of the Kimberley to Mount Isa region. Aust. Inst. Mining Metall. Monogr. 5: 217–252.Google Scholar
  45. Riley, K.W. and Saxby, J.D. (1983) Association of organic matter and vanadium in oil shale from the Toolebuc Formation of the Eromaga Basin, Australia. Chem. Geol. 37: 265–275.CrossRefGoogle Scholar
  46. Ripley, E.M., Shaffer, N.R. and Gilstrap, M.S. (1990) Distribution and geochemical characteristics of metal enrichement in the New Albany shale (Devonian Mississippian), Indiana. Econ. Geol. 85: 1790–1807.CrossRefGoogle Scholar
  47. Robert, P. (1988) Organic Metamorphism and Geothermal History. Elf-Aquitaine and D. Reidel Publ., 311 pp.Google Scholar
  48. Saxby, J.D. (1973) Diagenesis of metal—organic complexes in sediments: formation of metal sulphides from cystine complexes. Chem. Geol. 12: 241–248.CrossRefGoogle Scholar
  49. Saxby, J.D., Bennett, A.J.R., Corcoran, J.F., Lambert, D.E. and Ripley, K.W. (1986) Hydrocarbon generation simulation experiments of torbanite and brown coal over six years. Org. Geochem. 9: 69–81.CrossRefGoogle Scholar
  50. Scott, D.L., Bradshaw, B.E. and Tarlowski, C.Z. (1998) The tectono stratigraphic history of the Proterozoic Northern Lawn hill Platform, Australia: an integrated intracontinental basin analysis. Tectonophysics 300: 329–358.CrossRefGoogle Scholar
  51. Shibaoka, M., Foster, N.R., Okada, K. and Clark, K.N. (1984) Formation of pyrolytic carbon in continuous reactor for coal hydrogeneation. Fuel. 67: 169–173.CrossRefGoogle Scholar
  52. Shoemaker, E.M. and Shoemaker, C.S. (1996) The Proterozoic Impact Record of Australia. Aust. Geol. Sur). Org. J. 16: 379–398.Google Scholar
  53. Simonet, B.R.T. (1985) Hydrothermal petroleums: Genesis, migration and deposition in Guaymas Basin, Gulf of California. Can. J. Earth Sci. 22: 1919–1929.CrossRefGoogle Scholar
  54. Simoneit, B.R.T. (1993) Aqueous high-temperature and high pressure organic geochemistry of hydrothermal systems. Geochim. Cosmochim. Acta. 37: 3231–3243.CrossRefGoogle Scholar
  55. Southgate, P.N., Bradshaw, B.E., Domagala, J. et al. (1999) A chronostratigraphic basin framework for Palaeo and Mesoprottrozoic rocks (1730–1575 Ma) in northern Australia and implications for base metal mineralisation. J. Aust. Geol. Geophys (AGSO). (in press).Google Scholar
  56. Spirakis, C.S. and Heyl, A.V. (1993) Organic matter (bitumen and other forms) as key to localisation of Mississippi Valey type ores. In: J. Parnell, H. Kucha and P. Landeis (eds.) Bitumen In Ore Deposits. Springer Verlag, Berlin, pp. 381–397.CrossRefGoogle Scholar
  57. Stach, R., Teichmuller, M., Taylor, G.H., Mackowski, M-Th, Chandra, B. and Teichmuller, R. (1975) Coal Petrology. Gebruder Borntraeger, Berlin: 311 pp.Google Scholar
  58. Stewart, A. and Mitchell, K. (1987) Shatter cones at Lawn Hill circular structure, northwestern Queensland, Australia: Presumed astrobleme. Aust. J. Earth Sci. 34: 477–485.CrossRefGoogle Scholar
  59. Suess, E. (1979) Mineral phases in anoxic sediments by microbial decomposition of organic matter. Geochim. Cosmochim. Acta. 43: 339–352.CrossRefGoogle Scholar
  60. Taylor, D., Kontorovich, A.E., Larichev, A.I. and Glikson, M. (1994) Petroleum source rocks in the Roper Group of the McArthur Basin: Source characterisation and maturity determinations using physical and chemical methods. Aust. Petrol. Expl. Assoc. (APEA) J. 34: 279–296.Google Scholar
  61. Waltho, A.E. and Andrews, S.J. 1993: The Century zinc-lead deposit, northwest Queensland. Aus 1MM Century Conference, Adelaide, March 1993: 41–61.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • M. Glikson
  • M. Mastalerz
  • S. D. Golding
  • B. A. McConachie

There are no affiliations available

Personalised recommendations