Skip to main content

Influence of basin fill architecture on fluid flow and ore genesis in the Mount Isa Basin, Northern Australia

  • Chapter
  • 498 Accesses

Abstract

The known area of the Palaeo- to Mesoproterozoic Mount Isa Basin covers more than 120 000 km2 of north central Australia (Figure 1). Much of the basin margin has either been erosionally removed or is concealed beneath the younger Georgina, Carpentaria and Eromanga Basins. It is only in the northwest, where the younger basin sequences onlap the Murphy Inlier, that an original basin margin is preserved. The exposed part of the basin covers an area 600 km long and 200 km in width. The basin fill varies from more than 11 000 m stratigraphic thickness in the southeast to a zero edge along the exposed southern flank of the Murphy Inlier (Figure 1) in the northwest.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, G.M. (1991). Organic maturation and ore precipitation in southeast Missouri. Econ. Geol. 86: 909–926.

    Article  Google Scholar 

  • Ball, L.C. (1911). The Burketown Mineral Field. Geol. Surv. Queens. 232.

    Google Scholar 

  • Barrett, T.J. and Anderson, G.M. (1982). The solubility of sphalerite and galena in NaC1 brines. Econ. Geol. 77: 1923–1933.

    Article  Google Scholar 

  • Bechtel, A. and Püttmann, W. (1991). The origin of the Kupferschiefer-type mineralization the Richelsdorf Hills, Germany, as deduced from stable isotope and organic geochemical studies. Chem. Geol. 91: 1–18.

    Article  Google Scholar 

  • Bethke, C. (1990). Basin Hydrodynamics with Particular Reference to Petroleum Migration and Ore Formation. Course notes, The Earth Resources Foundation, University of Sydney, (unpublished).

    Google Scholar 

  • Blake, D.H. (1987). Geology of the Mount Isa Inlier and environs, Queensland and Northern Territory. Bur. Mineral Res. Geol. Geophys. Bull. 225.

    Google Scholar 

  • Blanchard, R. and Hall, G. (1942). Rock deformation and mineralization at Mount Isa. Aust. Inst. Mining Metall. Proc. 125: 1–60.

    Google Scholar 

  • Bradshaw, B.E., Krassay, A.A., Scott, D.L., McConachie, B.A., Wells, A.T. and Domagala, J. (1996). Sequence stratigraphie correlations and basin phase geometry of the Proterozoic Upper McNamara and Fickling Groups, Mount Isa Basin, northwest Queensland. In: T. Baker et al. (eds) MIC ‘86. Extended Conference Abstracts. ERGU Contribution 55. James Cook University of North Queensland. pp. 20–23.

    Google Scholar 

  • Brasier, M.D. and Lindsay, J.F. (1998). A billion years of environmental stability and the emergence of eutuaryotes: new data from Northern Australia. Geology, 26: 555–558.

    Article  Google Scholar 

  • Broadbent, G.C., Myers, R.E. and Wright, J.V. (1996). Geology and origin of shale-hosted Zn-Pb-Ag mineralization at the Century Mine, northwest Queensland. In: T. Baker et al. (eds). MIC ‘86. Extended Conference Abstracts. ERGU Contribution 55. James Cook University of North Queensland. pp. 24–27.

    Google Scholar 

  • Bubela, B. (1981). A model for sulphide band formation under epigenetic conditions–a study based on simulated sedimentary systems. Bur. Mineral Res. Austr. Geol. Geophys. Bull. 6: 117–121.

    Google Scholar 

  • Buick, R., Des Marais, D.J. and Knoll, A.H. (1995). Stable isotope compositions of carbonates from the Mesoproterozoic Bangemall Group, northwestern Australia. Chem. Geol., 123: 153–171.

    Article  Google Scholar 

  • Calver, C.R. and Lindsay, J.F. (1998) Ediacarian sequence and isotope stratigraphy of the Officer Basin, South Australia. Austr. J. of Earth Sci. 45: 513–532.

    Article  Google Scholar 

  • Carpenter, A.B., Trout, M.L. and Pickett, E.E. (1974). Preliminary report on the origin and chemical evolution of lead-and zinc-rich oilfield brines in central Mississippi. Econ. Geol. 69: 1191–206.

    Article  Google Scholar 

  • Carter, E.K. and Zimmerman, D.O. (1960). Constance Range iron deposits, north-western Queensland. Bur. Mineral Res. Geol. Geophys. Rec., 1960/75, (unpublished).

    Google Scholar 

  • Cathles, L.M. and Smith, A.T. (1983). Thermal constraints on the formation of Mississippi Valley-Type lead-zinc deposits and their implications for episodic basin dewatering and deposit genesis. Econ. Geol, 78: 983–1002.

    Article  Google Scholar 

  • Collins, A.G. (1980). Oilfield brines. In: G.D. Hobson (ed.) Developments in Petroleum Geology–2. Applied Science Publishers, London, pp. 139–187.

    Google Scholar 

  • Croxford, N.J.W., Janecek, J., Muir, M.D. and Plumb, K.A. (1973). Microorganisms of Carpentarian (Pre-Cambrian) age from the Amelia Dolomite, McArthur Group, Northern Territory, Australia. Nature. 245: 28–30.

    Article  Google Scholar 

  • Demaison, G. and Huizinga, B.J. (1991). Genetic classification of petroleum systems. Am. Assoc. Petrol. Geol. Bull. 75: 1626–1643.

    Google Scholar 

  • Derrick, G.M. (1996). The ‘geophysical’ approach to metallogeny of the Mt Isa Inlier–What sort of orebody do you want? Proceedings Australasian Institute of Mining and Metallurgy Annual Conference, Perth, pp. 349–366.

    Google Scholar 

  • Dorrins, P.K., Humphreville, R.G., and Womer, M.B. (1983). Results of 1983 Field program, Lawn Hill Area, ATP 327P, Queensland. Queensland Department of Minerals and Energy Company Report, 12489, (unpublished).

    Google Scholar 

  • Dunster, J.N. (1996). Sedimentology of the Lady Loretta Formation - a comparison of the regional setting to that of the Lady Loretta orebody. In: T. Baker et al. (eds). MIC ‘86. Extended Conference Abstracts. ERGU Contribution 55. James Cook University of North Queensland, pp. 47–50.

    Google Scholar 

  • Dunster, J.N., Barlow, M.G., McConachie, B.A. and Stainton, P.W. (1993a). Argyle Creek-1 Well Completion Report. ATP 423P, Queensland. Company Report, Queensland Department of Minerals and Energy (unpublished).

    Google Scholar 

  • Dunster, J.N., Barlow, M.G., McConachie, B.A. and Stainton, P.W. (1993b). Desert Creek-1 Well Completion Report, ATP 423P, Queensland. Company Report, Queensland Department of Minerals and Energy (unpublished).

    Google Scholar 

  • Dunster, J.N., Barlow, M.G., McConachie, B.A. and Stainton, P.W. (1993c). Egilagria-1 Well Completion Report, ATP 423P, Queensland. Company Report, Queensland Department of Minerals and Energy (unpublished).

    Google Scholar 

  • Dunster, J.N., McConachie, B.A. and Brown, M.G. (1989). PRC Beamesbrook-1 well completion report. Authority to Prospect 373P, Carpentaria Basin, Queensland. Company Report Queensland Department of Minerals and Energy (unpublished).

    Google Scholar 

  • Eiseniohr, B.N., Tompkins, L.A., Cathles, L.M., Barley, M.E. and Groves, D.I. (1994). Mississippi Valley-type deposits: Products of brine expulsion by eustatically induced hydrocarbon generation? An example from northwestern Australia. Geology. 22: 315–318.

    Article  Google Scholar 

  • Galloway, W.E. (1989). Genetic stratigraphie sequences in basin analysis I: architecture and genesis of flooding-surface bounded depositional units: AAPG Bull. 73: 125–142.

    Google Scholar 

  • Glikson, M. (1993). A petroleum source rock study of the Mount Isa Basin. Queensland Department of Minerals and Energy, Company Report, (unpublished).

    Google Scholar 

  • Goldhaber, M.B., Church, S.E., Doe, B.R. et al. Lead and sulfur isotope investigation of Paleozoic sedimentary rocks from the southern midcontinent of the United States: Implications for paleohydrology and ore genesis of the southeast Missouri Lead Belts. Econ. Geol. 90: 1875–1910.

    Google Scholar 

  • Gustafson, L.B. (1981). Models for sulphide ore formation in sedimentary rocks. Bur. Min. Res. J. Austral. Geol. Geophys. 6: 327–328.

    Google Scholar 

  • Hamilton, L.H. and Muir, M.D. (1974). Precambrian microfossils from the McArthur River lead-zinc-silver deposit Northern Territory, Australia. Mineral. Dep. 9: 83–86.

    Article  Google Scholar 

  • Hill, E.J., Loosveld, R.J.H. and Page, R.W. (1992). Structure and geochronology of the Tommy Creek Block, Mount Isa Inlier. Austr. Geol. Surv. Org. Bull. 243: 329–348.

    Google Scholar 

  • Idnurm, M., Giddings, J.W. and Plumb, K.A. (1995). Apparent polar wander and reversal stratigraphy of the Palaeo-Mesoproterozoic southeastern McArthur Basin, Australia. Precambrian Res. 72: 1–41.

    Article  Google Scholar 

  • Jackson, M.J. (1985). BMR strikes the worlds oldest oil. Bur. Mineral Res. Geol. Geophys. Res. Newsl., 3: 1–2.

    Google Scholar 

  • Jackson, M.J. (1986). Oil prospectivity of the Middle Proterozoic of northern Australia. Bureau of Mineral Resources Geology and Geophysics Extended Abstracts, 15th BMR Research Symposium, Canberra, 41–45.

    Google Scholar 

  • Jackson, M.J., Southgate, P.N., Krassay, A.A., McConachie, B.A., Wells, A.T. and Scott, D.L. (1996). New techniques/concepts for choosing the right ground for sediment-hosted mineralization - lower McNamara Group, Lawn Hill Platform. Geol. Soc. Aust. Abstr. 41: 216.

    Google Scholar 

  • Karhu, J.A. and Holland, H.D. (1996). Carbon isotopes and the rise of atmospheric oxygen. Geology. 24: 867–870.

    Article  Google Scholar 

  • Kaufman, A.J. and Knoll, A.H. (1995). Neoproterozoic variations in the C-isotope composition of seawater: stratigraphie and biochemical implications. Precambrian Res. 73: 27–49.

    Article  Google Scholar 

  • Kharaka, Y.K., Maest, A.S., Carothers, W.W., Law, L.M., Lamothe, P.J. and Fries, T.L. (1987) Geochemistry of metal-rich brines from central Mississippi Salt Dome basin, USA. Appl. Geochem. 2: 543–561.

    Article  Google Scholar 

  • Klein, C., Beukes, N.J., Holland, H.D., Kasting, J.F., Kump, L.R., and Lowe, D.R. (1992). Proterozoic atmospheres and oceans. In: J.W. Schopf and C. Klein (eds). The Proterozoic Biosphere–A Multidisciplinary Study. Cambridge University Press, Cambridge, pp. 137–174.

    Google Scholar 

  • Klein, G.dev. (1991). Diagenesis and fluid movement–basin maturation. Rev. Econ. Geol. 5: 91–101.

    Google Scholar 

  • Knoll, A.H. and Walter, M.R. (1992). Latest Proterozoic stratigraphy and Earth history. Nature, 356: 673–678.

    Article  Google Scholar 

  • Krassay, A.K. (1996). Gamma-ray curves from outcrop and drillcore: techniques, and uses for stratigraphie correlation of Proterozoic sequences in northern Australia. In: T. Baker et al. (eds). MIC ‘86 Extended Conference Abstracts. ERGU Contribution 55. James Cook University of North Queensland, pp. 60–63.

    Google Scholar 

  • Krassay, A.A. and McConachie, B.A. (1996). Outcrop and core derived gamma-ray curves: New insights into lithostratigraphic subdivisions and facies relationships. Geol. Soc. Austr. Abstr. 41: 239.

    Google Scholar 

  • Leighton, M.W., Kolata, D.R., Oltz, D.F. and Eidel, J.J. (eds) (1991). Interior Cratonic Basins. American Association of Petroleum Geologists Memoir. 51: 819.

    Google Scholar 

  • Lindsay, J.F. (1987). Sequence stratigraphy and depositional controls in Late Proterozoic-Early Cambrian sediments of Amadeus Basin, central Australia. Am. Assoc. Petrol. Geol. Bull. 71: 1387–1403.

    Google Scholar 

  • Lindsay, J.F. and Brasier, M.D., in press. A carbon isotope reference curve for c. 1700 to 1557 Ma, McArthur and Mount Isa Basins, northern Australia. Precambrian Research.

    Google Scholar 

  • Lindsay, J.F., and Leven, J.F. (1996). Evolution of a Neoproterozoic to Palaeozoic Intracratonic Setting, Officer Basin, South Australia. Basin Research. 8: 403–424.

    Article  Google Scholar 

  • Lindsay, J.F., Kennard, J.M. and Southgate, P.N. (1993). Application of Sequence Stratigraphy in an Intracratonic Setting. Amadeus Basin, central Australia. In: H.W. Posamentier, C.P. Sununerhayes, B.U. Haq and G.P. Allen (eds.) Sequence Stratigraphy and Facies Associations. IAS Special Publication 18, 605–631.

    Google Scholar 

  • Lisk, M., Eadington, P.J. and Hamilton, P.J. (1991). Hydrocarbon Migration History and Thermal History of Proterozoic Carbonate Rocks in Borehole Amoco 83–4, Lawn Hill Platform, Queensland. CSIRO Division of Exploration Geoscience, 215R, North Ryde, Sydney (unpublished).

    Google Scholar 

  • Loutit, T.S., Wyborn, L.A.I., Hinman, M.C. and Idnurm, M. (1994). Palaeomagnetic, tectonic, magmatic and mineralization events in the Proterozoic of northern Australia. Australasian Institute of Mining and Metallurgy Annual Conference, Darwin, pp. 123–128.

    Google Scholar 

  • Love, L.G. and Zimmerman, D.O. (1961) Bedded pyrite and microorganisms from the Mt Isa shale. Econ. Geol. 56: 873–96.

    Article  Google Scholar 

  • Lowe, D.R. (1992). Major events in the geological development of the Precambrian earth. In: J.W. Schopf and C. Klein (eds) The Proterozoic Biosphere–A Multidisciplinary Study. Cambridge University Press, Cambridge, pp. 67–75.

    Google Scholar 

  • Manning, D.A.C. (1986). Assessment of the role of organic matter in ore transport processes in low-temperature base-metal systems. Trans. Inst. Mining Metall. (Sect. B: Appl. Earth Sci.), 95: B195 - B200.

    Google Scholar 

  • McConachie, B.A. (1993). Basin analysis and economic geology of the northern Mount Isa Basin. PhD thesis: Brisbane, Queensland University of Technology.

    Google Scholar 

  • McConachie, B.A., Barlow, M.G., Dunster, J.N., Meaney, R.A. and Schaap, A.D. (1993). The Mount Isa Basin–Definition, structure and petroleum geology. Aust. Petrol. Expl. Assoc. J. 33: 237–257.

    Google Scholar 

  • McConachie, B.A., Bradshaw, M.T. and Bradshaw, J. (1996). Petroleum systems of the Petrel Sub-basin–An integrated approach to basin analysis and identification of hydrocarbon exploration opportunities. Aust. Petrol. Prod. Expl. Assoc. J. 36: 248–268.

    Google Scholar 

  • McConachie, B.A., Domagala, J., Jackson, M.J., Page, R.W. and Southgate, P.N. (1997). Correlation of the McNamara and Mount Isa Groups - A sequence stratigraphie framework for stratiform Pb-Zn-Ag deposits at Mount Isa and Lady Loretta. Geol. Soc. Austr. Abstr. 44: 48.

    Google Scholar 

  • McConachie, B.A. and Dunster, J.N. (1996). Sequence stratigraphy of the Bowthorn block in the northern Mount Isa basin and its implications for the base metal mineralization process. Geology 24 (2): 155–158.

    Article  Google Scholar 

  • McConachie, B.A. and Dunster, J.N. (1998). Regional stratigraphie correlations and stratiform sediment-hosted base metal mineralization in the northern Mount Isa Basin. Austr. J. Earth Sci. 45: 83–88.

    Article  Google Scholar 

  • Myers, R., Ceremuga, C., Clark, D. et al. (1996). Mount Isa lead-zinc mineralization: What controversy? In: T. Baker et al. (eds) MIC ‘86 Extended Conference Abstracts. ERGU Contribution 55. James Cook University of North Queensland. pp. 85–89.

    Google Scholar 

  • Muir, M.D., Armstrong, K.J. and Jackson, M.J. (1980). Precambrian hydrocarbons in the McArthur basin, NT. Bur. Mineral Res..1. Austr. Geol. Geophys. 5: 301–304.

    Google Scholar 

  • Muir, M.D., Donnelly, T.H., Wilkins, R.W.T. and Armstrong, K.J. (1985). Stable isotope, petrological, and fluid inclusion studies of minor mineral deposits from the McArthur Basin: implications for the genesis of some sediment-hosted base metal mineralization from the Northern Territory. Austr. J. Earth Sci. 32: 239–260.

    Article  Google Scholar 

  • North, F.K. (1985). Petroleum Geology. Allen and Unwin, Boston.

    Google Scholar 

  • Nybakken, S. (1991). Sealing fault traps–an exploration concept in a mature petroleum province: Tampen Spur, northern North Sea. First Break. 9: 209–222.

    Google Scholar 

  • Page, R.W. and Laing, W.P. (1992). Felsic metavolcanic rocks related to the Broken Hill Pb-Zn-Ag orebody, Australia: geology, depositional age, and timing of high grade metamorphism. Econom. Geol., 87: 2138–2168.

    Article  Google Scholar 

  • Page, R.W. and Sweet, I.P. (1998). Geochronology of basin phases in the western Mount Isa Inlier, and correlation with the McArthur Basin. Austr. J. Earth Sci. 45: 219–232.

    Article  Google Scholar 

  • Peat, C.J., Muir, M.D., Plumb, K.A., McKirdy, D.M. and Norvick, M.S. (1978). Proterozoic microfossils from the Roper Group, Northern Territory, Australia. Bur. Min. Res. J. Austr. Geol. Geophys., 3: 1–17.

    Google Scholar 

  • Perkins, W.G. (1990). Mount Isa copper orebodies. In: F.E. Hughes (ed.). Geology of the Mineral Deposits of Australia and Papua New Guinea. Australasian Institute of Mining and Metallurgy, Melbourne, pp. 935–941.

    Google Scholar 

  • Pfimer, I.R. (1992). Evaporites and Broken Hill - New concepts in an old area. Geol. Soc. Austr. Abstr. 32: 63.

    Google Scholar 

  • Plumb, K.A., Ahmad, M, and Wygralak, A.S. (1990). Mid-Proterozoic basins of the northern Australian craton–regional geology and mineralization. In: F.E. Hughes (ed.), Geology of the Mineral Deposits of Australia and Papua New Guinea. Australasian Institute of Mining and Metallurgy, Melbourne, pp. 881–902.

    Google Scholar 

  • Plumb, K.A. and Derrick, G.M. (1975). Geology of the Proterozoic rocks of the Kimberley to Mount Isa region. In: Knight C.L. (ed). Economic Geology of Australia and Papua New Guinea. 1–Metals. Australian Institute of Mining and Metallurgy, 5, Melbourne, pp. 217–252.

    Google Scholar 

  • Price, P.E., Lamore, F.E., Kyle, J.R. and Kurtz, J.P. (1988). Anomolous base and precious metals at oil-water contact in #1 Teague well, Smackover Formation, Southwest Arkansas. Am. Assoc. Petrol. Geolo. 72: 238.

    Google Scholar 

  • Schopf, J.W. and Klein, C. (eds) (1992). The Proterozoic Biosphere - A Multidisciplinary Study. Cambridge University Press, Cambridge, 1348 pp.

    Google Scholar 

  • Scott, D.L., Betts, P.G., Rogers, J.R. et al. (1996). Stratal growth and basin phase geometries in the Proterozoic of north Australia: preliminary investigations. Geolo. Soc. Austr. Abstr. 41: 379.

    Google Scholar 

  • Scott, D.L., Bradshaw, B.E. and Tarlowski, C.Z. (1998). The tectonostratigraphic history of the Proterozoic Northern Lawn Hill Platform, Australia: an integrated intracontinental basin analysis. Tectonophysics, 300: 329–358.

    Article  Google Scholar 

  • Simoneit, B.R.T. (1993). Hydrothermal activity and its effect on sedimentary organic matter. In: J. Parnell, H. Kucha and P. Landais (eds) Bitumens in Ore Deposits. Springer Verlag, Berlin, pp. 81–95.

    Chapter  Google Scholar 

  • Solomon, M. and Groves, D.I. (1994). The Geology and Origin of Australia’s Mineral Deposits. Proterozoic sediment hosted, stratiform (sedex) lead-zinc deposits. Clarendon Press, Oxford, pp. 168–293.

    Google Scholar 

  • Solomon, M. and Heinrich, C.A. (1992). Are heat producing granites essential to the origin of giant lead-zinc deposits at Mount Isa and McArthur River, Australia? Expl. Mining Geolo. 1: 85–91.

    Google Scholar 

  • Southgate, P.N., Jackson, M.J., Krassay, A.A. et al. (1996). Integrated Proterozoic basin analysis: constructing a regional structural and sequence stratigraphic framework for northern Australia. In: T. Baker et al. (eds). MIC ‘86. Extended Conference Abstracts. ERGU Contribution 55. James Cook University of North Queensland. pp. 132–136.

    Google Scholar 

  • Stewart, A.J. and Blake, D.H. (1992). Detailed studies of the Mount Isa Inlier. Bur. Mineral Res. Geol. Geophys. Bull. 243: 374.

    Google Scholar 

  • Sverjensky, D.A. (1984). Oilfield brines as ore-forming solutions. Econ. Geol. 79: 23–37.

    Article  Google Scholar 

  • Vail, P.R. (1987). Seismic stratigraphy interpretation using sequence stratigraphy. Part 1: seismic stratigraphy interpretation procedure. MPG Studies Geol. 27: pp. 1–10.

    Google Scholar 

  • Van Wagoner, J.C. and Bertram, G.T. (1995). Sequence stratigraphy of foreland basin deposits. Am. Assoc. Petrol. Geol. Mem. 64: 490 pp.

    Google Scholar 

  • Wilson, LH., Derrick, G.M. and Perkin, D.J. (1985). Eastern Creek Volcanics; their geochemistry and possible role in copper mineralization at Mount Isa, Queensland. Bur. Mineral Res. J. Austr. Geol. Geophys. 9: 319–328.

    Google Scholar 

  • Wuellner, D.E., Lehtonen, L.R. and James, W.C. (1986). Sedimentary-tectonic development of the Marathon and Val Verde basins, West Texas USA: a Permo-Carboniferous migrating foredeep. Int. Assoc. Sedimentol. Sp. Publ. 8: pp. 347–368.

    Google Scholar 

  • Zartman, R.E. and Doe, B.R. (1981). Plumbotectonics–the model. Tectonophysics. 75: 135–162.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

McConachie, B.A., Lindsay, J.F., Glikson, M. (2000). Influence of basin fill architecture on fluid flow and ore genesis in the Mount Isa Basin, Northern Australia. In: Glikson, M., Mastalerz, M. (eds) Organic Matter and Mineralisation: Thermal Alteration, Hydrocarbon Generation and Role in Metallogenesis. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9474-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9474-5_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4019-0

  • Online ISBN: 978-94-015-9474-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics