Alteration and migration process of organic matter in hydrothermal systems and implications for metallogenesis

  • Bernd R. T. Simoneit
Chapter

Abstract

Organic matter in hydrothermal rift systems, as in contemporary sedimentary basins, is usually of a marine and generally of a Recent (sometimes geologically old) origin (Simoneit, 1982a, 1983). It is derived from the syngenetic residues of posthumus biogenic debris-composed of autochthonous detritus and minor allochthonous residues brought in from continental sources (Simoneit, 1982a, 1983). The interaction of this organic matter with high temperature fluids generates and migrates hydrothermal petroleum or bitumen. The similarities and differences between hydrothermal petroleums and conventional reservoir petroleums are summarized in Table 1. The major distinguishing feature is that hydrothermal petroleums have an enhanced content of unsubstituted aromatic hydrocarbons.

Keywords

Hydrothermal Fluid Hydrothermal System Supercritical Water Organic Geochemistry Carbon Preference Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballard R.D., Francheteau J., Juteau T., Rangan C. and Normak W. (1981) East Pacific Rise at 21°N: The volcanic, tectonic and hydrothermal processes of the central axis. Earth Planet. Sci. Lett. 55: 1–10.CrossRefGoogle Scholar
  2. Bazylinski D.A., Farrington J.W. and Jannasch H.W. (1988) Hydrocarbons in surface sediments from a Guaymas Basin hydrothermal vent site. Org. Geochem. 12: 547–558.CrossRefGoogle Scholar
  3. Berkowitz N. and Calderon J. (1990). Extraction of oil sand bitumens with supercritical water. Fuel Proc. Technol. 25: 33–44.CrossRefGoogle Scholar
  4. Bischoff J.L., and Pitzer K.S. (1989) Liquid-vapor relations for the system NaCl-H2O: Summary of the P-T-x surface from 300° to 500°C. Am. J. Sci. 289: 217–248.CrossRefGoogle Scholar
  5. Bischoff J.L. and Rosenbauer R.J. (1984). The critical point and two-phase boundary of sea water, 200–500°C. Earth Planet. Sci. Lett. 68: 172–180.CrossRefGoogle Scholar
  6. Bischoff J.L. and Rosenbauer R.J. (1988) Liquid-vapor relations in the critical region of the system NaC1–H2O from 380 to 415°C: A refined determination of the critical point and two-phase boundary of seawater. Geochim. Cosmochim. Acta 52: 2121–2126.CrossRefGoogle Scholar
  7. Blumer M. (1975) Curtisite, idrialite and pendletonite, polycyclic aromatic hydrocarbon minerals: their composition and origin. Chem. Geol. 16: 245–256.CrossRefGoogle Scholar
  8. Blumer M. (1976) Polycyclic aromatic compounds in nature. Sci. Am. 234: 34–45.CrossRefGoogle Scholar
  9. Brault M. and Simoneit B.R.T. (1988) Steroid and triterpenoid distributions in Bransfield Strait sediments: Hydrothermally-enhanced diagenetic transformations. Org. Geoch. 13: 697–705.CrossRefGoogle Scholar
  10. Brault M. and Simoneit B.R.T. (1989) Trace petroliferous organic matter associated with hydrothermal minerals from the Mid-Atlantic Ridge at the Trans-Atlantic Geotraverse 26°N site. J. Geophy. Res. 94: 9791–9798CrossRefGoogle Scholar
  11. Brault M. and Simoneit B.R.T. (1990) Mild hydrothermal alteration of immature organic matter in sediments from the Bransfield Strait, Antarctica. Appl. Geochem. 5: 149–158.CrossRefGoogle Scholar
  12. Brault, M., Simoneit B.R.T., Marty J.C. and Saliot A. (1985) Les hydrocarbures dans le systéme hydrothermal de la ride Est-Pacifique, â 13°N. CR Acad. Sci. Paris. 301: 807–812.Google Scholar
  13. Brault M., Simoneit B.R.T., Marty J.C. and Saliot A. (1988) Hydrocarbons in waters and particulate material from hydrothermal environments at the East Pacific Rise, 13°N. Org. Geochem. 12: 209–219.CrossRefGoogle Scholar
  14. Brault M., Simoneit B.R.T. and Saliot A. (1989) Trace petroliferous organic matter associated with massive hydrothermal sulfides from the East Pacific Rise at 13°N and 21°N. Oceanol. Acta. 12: 405–415.Google Scholar
  15. Carranza-Edwards A., Rosales-Hoz L., Aguayo-Camargo J.E., Lozano-Santa Cruz R. and Hornelas-Orozco Y. (1990) Geochemical study of hydrothermal core sediments and rocks from the Guaymas Basin, Gulf of California. Appl. Geochem. 5: 77–82.CrossRefGoogle Scholar
  16. Chen C.-T.A. (1981) Geothermal systems at 21°N. Science. 211: 298.CrossRefGoogle Scholar
  17. Clifton C.G., Walters C.C. and Simoneit B.R.T. (1990) Hydrothermal petroleums from Yellowstone National Park, Wyoming, USA. Appl. Geochem. 5: 169–191.CrossRefGoogle Scholar
  18. Connolly J.F. (1966) Solubility of hydrocarbons in water near the critical solution temperatures. J. Chem. Eng. Data. 11: 13–16.CrossRefGoogle Scholar
  19. Curiale J.A. (1993) Occurrence and significance of metals in solid bitumens: An organic geochemical approach. In: Bitumens in Ore Deposits, J. Parnell, H. Kucha and P. Landais (eds)., Springer-Verlag, Berlin, pp. 461–474.Google Scholar
  20. Curray J.R., Moore D.G., Aguayo J.E. et al.,(1982) Initial Reports of the Deep Sea Drilling Project, Vol. 64, Parts I and II, U.S. Govt. Printing Office, Washington, D.C. 1314 pp.Google Scholar
  21. Czochanska Z., Sheppard C.M., Weston R.J., Woolhouse A.D. and Cook R.A. (1986) Organic geochemistry of sediments in New Zealand, Part I. A biomarker study of the petroleum seepage at the geothermal region of Waiotapu. Geochim. Cosmochim. Acta. 50: 507–515.CrossRefGoogle Scholar
  22. Davis E., Mottl M., Fisher A. et al.,(1992) Proceedings of the Ocean Drilling Program, Initial Reports,Vol. 139, Ocean Drilling Program, College Station, TX, 1026 pp.Google Scholar
  23. Didyk B.M. and Simoneit B.R.T. (1989) Hydrothermal oil of Guaymas Basin and implications for petroleum formation mechanisms. Nature. 342: 65–69.CrossRefGoogle Scholar
  24. Didyk B.M. and Simoneit B.R.T. (1990) Petroleum characteristics of the oil in a Guaymas Basin hydrothermal chimney Appt. Geochem. 5: 29–40.CrossRefGoogle Scholar
  25. Einsele G. (1985) Basaltic sill-sediment complexes in young spreading centers: Genesis and significance. Geology. 13: 249–252.CrossRefGoogle Scholar
  26. Einsele G., Gieskes J., Curray J. et al.,(1980) Intrusion of basaltic sills into highly porous sediments and resulting hydrothermal activity. Nature. 283: 441–445.Google Scholar
  27. Elliot D.C. and Sealock L.J., Jr. (1983) Aqueous catalyst systems for the water-gas shift reaction. 1. Comparative catalyst studies. Indust. Eng. Chem. Prod. Res. Deli. 22: 426–431.CrossRefGoogle Scholar
  28. Elliot D.C., Hallen R.T., and Sealock L.J., Jr. (1983) Aqueous catalyst systems for the water-gas shift reaction. 2. Mechanism of basic catalysis. Indust. Eng. Chem. Prod. Res. Dey. 22: 431–435.CrossRefGoogle Scholar
  29. Filby R.H. (1975) The nature of metals in petroleum. In: The Role of Trace Metals in Petroleum. T.F. Yen (ed.) Ann Arbor Science, Ann Arbor, pp. 31–58.Google Scholar
  30. Galimov E.M. and Simoneit B.R.T. (1982a) Geochemistry of interstitial gases in sedimentary deposits of the Gulf of California, Leg 64. In: Initial Reports of the Deep Sea Drilling Project, Vol. 64, J.R. Curray, D.G. Moore et al.,(eds). U.S. Govt. Printing Office, Washington D.C., pp. 781–788.Google Scholar
  31. Galimov E.M. and Simoneit B.R.T (1982b) Variations in the carbon isotope compositions of CH4 and CO2 in the sedimentary sections of Guaymas Basin (Gulf of California), Geokhim. Acad. Nauk SSSR. 7: 1027–1034.Google Scholar
  32. Geissman T.A., Sim K.Y. and Murdoch J. (1967) Organic minerals. Picene and chrysene as constituents of the mineral curtisite (idrialite). Experientia. 23: 793–794.CrossRefGoogle Scholar
  33. Gieskes J.M., Simoneit B.R.T., Brown T., Shaw T., Wang Y.-C., and Magenheim A. (1988) Hydrothermal fluids and petroleum in surface sediments of Guaymas Basin, Gulf of California: A case study. Can. Mineral. 26: 589–602.Google Scholar
  34. Giordano T.H. (1985) A preliminary evaluation of organic ligands and metal-organic complexing in Mississippi Valley-type ore solutions. Econ. Geol. 80: 96–106.CrossRefGoogle Scholar
  35. Giordano T.H. and Barnes H.L. (1981) Lead transport in Mississippi Valley-type ore solutions. Econ. Geol., 76: 2200–2211.Google Scholar
  36. Gize A.P. and Barnes H.L. (1987) The organic geochemistry of two Mississippi Valley-type lead — zinc deposits. Econ. Geol. 82: 457–470.CrossRefGoogle Scholar
  37. Hartmann M. (1980) Atlantis II Deep geothermal brine system. Hydrographie situation in 1977 and changes since 1965. Deep-Sea Res. 27: 161–171.CrossRefGoogle Scholar
  38. Hartmann M. (1985) Atlantis II Deep geothermal brine system. Chemical processes between hydrothermal brines and Red Sea deep water. Marine Geol. 64: 157–177.CrossRefGoogle Scholar
  39. Hékinian R., Fevrier M., Avedik F. et al.,(1983) East Pacific Rise near 13°N: Geology of new hydrothermal fields. Science. 219: 1321–1324.Google Scholar
  40. Hunt J.M. (1996) Petroleum Geochemistry and Geology. 2nd edn, W.H. Freeman and Company, New York, 743 pp.Google Scholar
  41. Jenden P.D., Simoneit B.R.T. and Philp R.P. (1982) Hydrothermal effects on protokerogen of unconsolidated sediments from Guaymas Basin, Gulf of California, elemental compositions, stable carbon isotope ratios and electron spin resonance spectra. In: Initial Reports of the Deep Sea Drilling Project,Vol. 64, J.R. Curray, D.G. Moore et al.,(eds). U.S. Govt. Printing Office, Washington, D.C., pp. 905–912.Google Scholar
  42. Jones M.L. (ed.) (1985) Hydrothermal vents of the Eastern Pacific: An overview. Bull. Biol. Soc. Wash. 6: 1–547.Google Scholar
  43. Josephson J. (1982) Supercritical fluids. Environ. Sci. Technol. 16: 548A - 551A.CrossRefGoogle Scholar
  44. Kawka O.E. and Simoneit B.R.T. (1987) Survey of hydrothermally-generated petroleums from the Guaymas Basin spreading center. Org. Geochem. 11: 311–328.CrossRefGoogle Scholar
  45. Kawka O.E. and Simoneit B.R.T. (1990) Polycyclic aromatic hydrocarbons in hydrothermal petroleums from the Guaymas Basin spreading center. App. Geochem. 5: 17–27.CrossRefGoogle Scholar
  46. Kawka O.E. and Simoneit B.R.T. (1994) Hydrothermal pyrolysis of organic matter in Guaymas Basin: I. Comparison of hydrocarbon distributions in subsurface sediments and seabed petroleums. Org. Geoch. 22: 947–978.CrossRefGoogle Scholar
  47. Koski R.A., Lonsdale P.F., Shanks W.C., Berndt M.E. and Howe S.S. (1985) Mineralogy and geochemistry of a sediment-hosted hydrothermal sulfide deposit from the southern trough of Guaymas Basin, Gulf of California. J. Geophys. Res. 90: 6695–6707.CrossRefGoogle Scholar
  48. Kulm L.D., Suess E., Moore J.C. et al.,(1986) Oregon subduction zone: Venting, fauna, and carbonates. Science. 231: 561–566.Google Scholar
  49. Kvenvolden K.A. and Simoneit B.R.T. (1990) Hydrothermally derived petroleum: Examples from Guaymas Basin, Gulf of California and Escanaba Trough, Northeast Pacific. Am. Assoc. Petrol. Geol. Bull. 74: 223–237.Google Scholar
  50. Kvenvolden, K.A., Rapp J.B., Hostettler F.D., Morton J.L., King J.D. and Claypool G.E. (1986) Petroleum associated with polymetallic sulfide in sediment from Gorda Ridge. Science. 234: 1231–1234.CrossRefGoogle Scholar
  51. Kvenvolden K.A., Rapp J.B. and Hostettler F.D. (1990) Hydrocarbon geochemistry of hydrothermallygenerated petroleum from Escanaba Trough, offshore California. Appl. Geochem. 5: 83–91.CrossRefGoogle Scholar
  52. Leif R.N., Simoneit B.R.T. and Kvenvolden K.A. (1991) Simulation of hydrothermal petroleum generation by laboratory hydrous pyrolysis. In: Organic Geochemistry, Advances and Applications in the Natural Environment, D.A.C. Manning (ed.) Manchester University Press, Manchester, pp. 300–303.Google Scholar
  53. Leif R.N., Simoneit B.R.T. and Kvenvolden K.A. (1992) Hydrous pyrolysis of n—C32H66 in the presence and absence of inorganic components. Am. Chem. Soc., Div. Fuel Chem., 204th Nat. Meet., Preprints. 37: 1748–1753.Google Scholar
  54. Lewan M.D. (1993) Laboratory simulation of petroleum formation: Hydrous pyrolysis. In: Organic Geochemistry: Principles and Applications M.H Engel and S.A. Macko (eds) Plenum Press, New York, pp. 419–442.Google Scholar
  55. Lonsdale P. (1985) A transform continental margin rich in hydrocarbons, Gulf of California. Am. Assoc. Petrol. Geol. Bull. 69: 1160–1180.Google Scholar
  56. Lonsdale P. and Becker K. (1985) Hydrothermal plumes, hot springs, and conductive heat flow in the Southern Trough of Guaymas Basin. Earth Planet. Sci. Lett. 73: 211–225.CrossRefGoogle Scholar
  57. Love. J.D. and Good, J.M. (1970) Hydrocarbons in thermal areas, northwestern Yellowstone National Park, Wyoming. U.S. Geol. Survey Prof. Paper 7644-B.Google Scholar
  58. Macqueen R.W. and Powell T.G. (1983) Organic geochemistry of the Pine Point lead — zinc orefield and region, Northwest Territories, Canada. Econ. Geol. 78: 1–25.CrossRefGoogle Scholar
  59. McCollom T.M., Simoneit B.R.T. and Shock E.L. (1999a) Hydrous pyrolysis of polycyclic aromatic hydrocarbons and implications for the origin of PAH in hydrothermal petroleum. Energy Fuels 13: 401–410.CrossRefGoogle Scholar
  60. McCollom T.M., Seewald J.S. and Simoneit B.R.T. (1999b) Reactivity of monocyclic aromatic compounds in hydrothermal experiments and geologic fluids. Geochim. Cosmochim. Acta. Submitted for publication.Google Scholar
  61. Merewether R., Olsson M.S. and Lonsdale P. (1985) Acoustically detected hydrocarbon plumes rising from 2-km depths in Guaymas Basin, Gulf of California. J. Geophy. Res. 90: 3075–3085.CrossRefGoogle Scholar
  62. Michaelis W., Jenisch A. and Richnow H.H. (1990) Hydrothermal petroleum generation in Red Sea sediments from the Kebrit and Shaban Deeps. Appl. Geochem. 5: 103–114.CrossRefGoogle Scholar
  63. Parnell J. (1993) Metal enrichments in bitumens from the Carboniferous of Ireland: Potential in exploration for ore deposits. In: Bitumens in Ore Deposits, J. Parnell, H. Kucha and P. Landais (eds.) Springer-Verlag, Berlin, pp. 475–489.CrossRefGoogle Scholar
  64. Peter J.M. (1986) Genesis of hydrothermal vent deposits in the southern trough of Guaymas Basin, Gulf of California: A mineralogical and geochemical study, M.Sc. thesis, University of Toronto.Google Scholar
  65. Peter J.M., Peltonen P., Scott S.D., Simoneit B.R.T. and Kawka O.E. (1991) Carbon-14 ages of hydrothermal petroleum and carbonate in Guaymas Basin, Gulf of California — implications for oil generation, expulsion and migration. Geology. 19: 253–256.CrossRefGoogle Scholar
  66. Peter J.M., Simoneit B.R.T., Kawka O.E. and Scott S.D. (1990) Liquid hydrocarbon-bearing inclusions in modern hydrothermal chimneys and mounds from the southern trough of Guaymas Basin. Appl. Geochem. 5: 51–63.CrossRefGoogle Scholar
  67. Pitzer K.S. (1986) Large-scale fluctuations and the critical behavior of dilute NaCI in H2O. J. Phys. Chem. 90: 1502–1504.CrossRefGoogle Scholar
  68. Price L.C. (1993) Thermal stability of hydrocarbons in nature: Limits, evidence, characteristics, and possible controls. Geochim. Cosmochim. Acta. 57: 3261–3280.CrossRefGoogle Scholar
  69. Price L.C., Wenger L.M., Ging T. and Blount C.W. (1983) Solubility of crude oil in methane as a function of pressure and temperature. Org. Geochem. 4: 201–221.CrossRefGoogle Scholar
  70. Rona P.A. (1984) Hydrothermal mineralization at seafloor spreading centers. Earth Sci. Rev. 20: 1–104.CrossRefGoogle Scholar
  71. Rona P.A. (1988) Hydrothermal mineralization at oceanic ridges. Can. Mineral. 26: 431–465.Google Scholar
  72. Rona P.A. and S.D. Scott (1993) Preface to special issue on sea-floor hydrothermal mineralization: new perspectives. Econ. Geol. 88: 1933–1976.Google Scholar
  73. Rona P.A., Thompson G., Mottl M.J. et al.,(1984) Hydrothermal activity at the Trans-Atlantic Geotraverse hydrothermal field, Mid-Atlantic Ridge Crest at 26°N. J. Geophy. Res. 89: 11 365–11 377.Google Scholar
  74. Ross D.S., Hum G.P., Mint T.-C., Green T.K. and Mansini R. (1986) Supercritical water/CO liquefaction and a model for coal conversion. Fuel Proc. Technol. 12: 277–285.CrossRefGoogle Scholar
  75. Sakai H., Gamo T., Kim E.-S. et al.,(1990) Venting of carbon dioxide-rich fluid and hydrate formation in mid-Okinawa Trough backarc basin. Science. 248: 1093–1096.Google Scholar
  76. Sanders N.D. (1986) Visual observation of the solubility of heavy hydrocarbons in near-critical water. Indust. Eng. Chem. Fundam. 25: 169–171.CrossRefGoogle Scholar
  77. Saxby J.D. (1976) The significance of organic matter in ore genesis. In: Handbook of Strata-bound and Stratiform Ore Deposits, Vol. 2. Geochemical Studies, K.H. Wolf, (ed.) Elsevier, Amsterdam, pp. 111–133.Google Scholar
  78. Scott L.T. (1982) Thermal rearrangements of aromatic compounds. Acc. Chem. Res. 15: 52–58.CrossRefGoogle Scholar
  79. Shaw R.W., Brill T.B., Clifford A.A., Eckert C.E. and Franck E.U. (1991) Supercritical water, medium for chemistry. Chem. Eng. News, Dec. 23, 26–38.Google Scholar
  80. Shock E.L. (1988) Organic acid metastability in sedimentary basins. Geology. 16: 886–890.CrossRefGoogle Scholar
  81. Shock E.L. (1989) Corrections to ‘Organic acid metastability in sedimentary basins’. Geology. 16: 886–890.CrossRefGoogle Scholar
  82. Shock E.L. (1990) Chemical constraints on the origin of organic compounds in hydrothermal systems. Origins Life Evolution Biosphere. 20: 331–367.CrossRefGoogle Scholar
  83. Simoneit B.R.T. (1982a) The composition, sources and transport of organic matter to marine sediments — the organic geochemical approach. In: Proc. Symp. Marine. Chem. into the Eighties. J.A.J. Thompson and W.D. Jamieson (eds.). Nat. Res. Council of Canada, 82–112.Google Scholar
  84. Simoneit B.R.T. (1982b) Shipboard organic geochemistry and safety monitoring, Leg 64, Gulf of California. In: Initial Reports of the Deep Sea Drilling Project,Vol. 64, J.R. Curray, D.G. Moore et al.,(eds). U.S. Govt. Printing Office, Washington, D.C., 723–728.Google Scholar
  85. Simoneit B.R.T. (1983) Organic matter maturation and petroleum genesis: Geothermal versus hydrothermal. In: The Role of Heat in the Development of Energy and Mineral Resources in the Northern Basin and Range Province, Geothermal Research Council, Special North No. 13, Davis, California. pp. 215–241.Google Scholar
  86. Simoneit B.R.T. (1984a) Hydrothermal effects on organic matter — High versus low temperature components. Org. Geochem. 6: 857–864.CrossRefGoogle Scholar
  87. Simoneit B.R.T. (1984b) Effects of hydrothermal activity on sedimentary organic matter: Guaymas Basin, Gulf of California — petroleum genesis and protokerogen degradation. In: Hydrothermal Processes at Seafloor Spreading Centers, P.A. Rona, K. Boström, L. Laubier and K.L. Smith Jr. (eds). NATO-ARI Series, Plenum Press, New York, pp. 453–474.Google Scholar
  88. Simoneit B.R.T. (1985) Hydrothermal petroleum: Genesis, migration and deposition in Guaymas Basin, Gulf of California. Can. J. Earth Sci. 22: 1919–1929.CrossRefGoogle Scholar
  89. Simoneit B.R.T. (1992) Natural hydrous pyrolysis-petroleum generation in submarine hydrothermal systems. In: Productivity, Accumulation and Preservation of Organic Matter in Recent and Ancient Sediments, J.K. Whelan and J.W. Farrington (eds.) Columbia University Press, New York, pp. 368–402.Google Scholar
  90. Simoneit B.R.T. (1994) Lipid/bitumen maturation by hydrothermal activity in sediments of Middle Valley, Leg 139. In: Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 139, M. Mottl, E. Davis, A. Fisher and J. Slack (eds). Ocean Drilling Program, College Station, Texas, pp. 447–465.Google Scholar
  91. Simoneit B.R.T. (1995) Evidence for organic synthesis in high temperature aqueous media–facts and prognosis. Origins Life Evolution Biosphere. 25: 119–140.CrossRefGoogle Scholar
  92. Simoneit B.R.T. and Fetzer J.C. (1996) High molecular weight polycyclic aromatic hydrocarbons in hydrothermal petroleums from the Gulf of California and Northeast Pacific Ocean. Org. Geochem. 24: 1065–1077.CrossRefGoogle Scholar
  93. Simoneit B.R.T. and Galimov E.M. (1984) Geochemistry of interstitial gases in Quaternary sediments of the Gulf of California. Chem. Geol. 43: 151–166.CrossRefGoogle Scholar
  94. Simoneit B.R.T. and Gize A.P. (1999) Analytical techniques for bitumen characterization in ore deposits. Rev. Econ. Geol.,in press.Google Scholar
  95. Simoneit B.R.T. and Kawka O.E. (1987) Hydrothermal petroleum from diatomites in the Gulf of California. Geol. Soc. Lond. Sp. Publ. 26: pp. 217–228.CrossRefGoogle Scholar
  96. Simoneit B.R.T. and Kvenvolden K.A. (1994) Comparison of 14C ages of hydrothermal petroleums. Org. Geochem. 21: 525–529.CrossRefGoogle Scholar
  97. Simoneit B.R.T. and Lonsdale P.F. (1982) Hydrothermal petroleum in mineralized mounds at the seabed of Guaymas Basin. Nature. 295: 198–202.CrossRefGoogle Scholar
  98. Simoneit B.R.T. and Philp R.P. (1982) Organic geochemistry of lipids and kerogen and the effects of basalt intrusions on unconsolidated oceanic sediments: Sites 477, 478 and 481, Guaymas Basin, Gulf of California. In: Initial Reports of the Deep Sea Drilling Project,Vol. 64, J.R. Curray, D.G. Moore et al.,(eds). U.S. Govt. Printing Office, Washington, D.C., pp. 883–904.Google Scholar
  99. Simoneit B.R.T. and Schoell M. (1995) Carbon isotope systematics of individual hydrocarbons in hydrothermal petroleums from Guaymas Basin, Gulf of California. Org. Geochem. 24: 1064–1077.Google Scholar
  100. Simoneit B.R.T., Mazurek M.A., Brenner S., Crisp P.T. and Kaplan I.R. (1979) Organic geochemistry of recent sediments from Guaymas Basin, Gulf of California. Deep Sea Res. 26A: 879–891.CrossRefGoogle Scholar
  101. Simoneit B.R.T., Brenner S., Peters K.E. and Kaplan I.R. (1981) Thermal alteration of Cretaceous black shale by basaltic intrusions in the Eastern Atlantic. II. Effects on bitumen and kerogen. Geochim. Cosmochim. Acta. 45: 1581–1602.CrossRefGoogle Scholar
  102. Simoneit B.R.T., Philp R.P., Jenden P.D. and Galimov E.M. (1984) Organic geochemistry of Deep Sea Drilling Project sediments form the Gulf of California — hydrothermal effects on unconsolidated diatom ooze. Org. Geochem 7: 173–205.CrossRefGoogle Scholar
  103. Simoneit B.R.T., Grimait J.O., Hayes J.M. and Hartman H. (1987) Low temperature hydrothermal maturation of organic matter in sediments from the Atlantis II Deep, Red Sea. Geoch. Cosmochim. Acta. 51: 879–894.CrossRefGoogle Scholar
  104. Simoneit B.R.T., Kawka O.E. and Brault M. (1988) Origin of gases and condensates in the Guaymas Basin hydrothermal system. Chem. Geol. 71: 169–182.CrossRefGoogle Scholar
  105. Simoneit B.R.T., Brault M. and Saliot A. (1990a) Hydrocarbons associated with hydrothermal minerals, vent waters and talus on the East Pacific Rise and Mid-Atlantic Ridge. Appl. Geochem. 5: 115–124.CrossRefGoogle Scholar
  106. Simoneit B.R.T., Lonsdale P.F., Edmond J.M. and Shanks III W.C. (1990b) Deep-water hydrocarbon seeps in Guaymas Basin, Gulf of California. Appl. Geochem. 5: 41–49.CrossRefGoogle Scholar
  107. Simoneit B.R.T., Kawka O.E. and Wang G.-M. (1992a) Biomarker maturation in contemporary hydrothermal systems, alteration of immature organic matter in zero geological time. In: Biological Markers in Sediments and Petroleum, J. Moldowan, R.P. Philp and P. Albrecht (eds.) Prentice Hall, Englewood Cliffs, NJ. pp. 124–141.Google Scholar
  108. Simoneit B.R.T., Goodfellow W.D. and Franklin J.M. (1992b) Hydrothermal petroleum at the seafloor and organic matter alteration in sediments of Middle Valley, Northern Juan de Fuca Ridge. Appl. Geochem. 7: 257–264.CrossRefGoogle Scholar
  109. Simoneit B.R.T., Schoell M., Dias R.F. and Radler de Aquino Neto F. (1993) Unusual carbon isotope compositions of biomarker hydrocarbons in a Permian tasmanite. Geochim. Cosmochim. Acta. 57: 4205–4211.CrossRefGoogle Scholar
  110. Siskin M. and A.R. Katritzky (1991) Reactivity of organic compounds in hot water: Geochemical and technological implications. Science. 254: 231–237.CrossRefGoogle Scholar
  111. Siskin M., Brons G., Katritzky A.R. and Balasubramanian M. (1990) Aqueous organic chemistry. 1. Aquathermolysis: Comparison with thermolysis in the reactivity of aliphatic compounds. Energy Fuels. 4: 475–482.CrossRefGoogle Scholar
  112. Spiess F.N., Macdonald K.C., Atwater T. et a., (1980) East Pacific Rise; hot springs and geophysical experiments. Science. 207: 1421–1433.Google Scholar
  113. Thompson G., Humphris S.E., Schroeder B., Sulanowska M. and Rona P.A. (1988) Hydrothermal mineralization on the Mid-Atlantic Ridge. Can. Mineral. 26: 697–711.Google Scholar
  114. Tiercelin, J.-J., Thourin C., Kalala T. and Mondegeur A. (1989) Discovery of sublacustrine hydrothermal activity and associated massive sulfides and hydrocarbons in the north Tanganyika Trough, East African Rift. Geology. 17: 1053–1056.CrossRefGoogle Scholar
  115. Tiercelin J.-J., Boulégue J. and Simoneit B.R.T. (1993) Hydrocarbons, sulphides and carbonate deposits related to sublacustrine hydrothermal seeps in the North Tanganyika Trough, East African Rift. In: Bitumens in Ore Deposits, J. Parnell, H. Kucha and P. Landais, (eds). Springer Verlag, Berlin, pp. 96–113.CrossRefGoogle Scholar
  116. Tissot B.P. and Weite D.H. (1984) Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration,2nd edn., Springer Verlag.Google Scholar
  117. Tödheide K. (1982) Hydrothermal solutions. Ber. Bunsenges. Phys. Chem. 86: 1005–1016.CrossRefGoogle Scholar
  118. Venkatesan M.I. and Kaplan I.R. (1987) The lipid geochemistry of Antarctic marine sediments: Bransfield Strait. Marine Chem. 21: 347–375.CrossRefGoogle Scholar
  119. Welhan J.A. and J.E. Lupton (1987) Light hydrocarbon gases in Guaymas Basin hydrothermal fluids: Thermogenic versus abiogenic origin. Am. Assoc. Petrol. Geol. Bull. 71: 215–223.Google Scholar
  120. Weres O., Newton A.S. and Tsao L. (1988) Hydrous pyrolysis of alkanes, alkenes, alcohols and ethers. Org. Geochem. 12: 433–444.CrossRefGoogle Scholar
  121. Whelan J.K. and J.M. Hunt (1982) C1-C8 in Leg 64 sediments, Gulf of California. In: Initial Reports of the Deep Sea Drilling Project,Vol. 64, J.R. Curray, D.G. Moore et al.,(eds). U.S. Govt. Printing Office, Washington, D.C., pp. 763–779.Google Scholar
  122. Whelan J.K., Simoneit B.R.T. and M. Tarafa (1988) C1–C8 hydrocarbons in sediments from Guaymas Basin, Gulf of California — comparison to Peru Margin, Japan Trench and California Borderlands. Org. Geochem. 12: 171–194.CrossRefGoogle Scholar
  123. Whiticar M.J., Suess E. and Wehner H. (1985) Thermogenic hydrocarbons in surface sediments of the Bransfield Strait, Antarctic Peninsula. Nature. 314: 87–90.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Bernd R. T. Simoneit

There are no affiliations available

Personalised recommendations