Implications of hydrocarbons in gold-bearing epithermal systems: Selected examples from the Canadian Cordillera

  • M. Mastalerz
  • R. M. Bustin
  • A. J. Sinclair
  • B. A. Stankiewicz
  • M. L. Thomson


The generation of hydrocarbons through hydrothermal processes has been widely discussed and documented (e.g. Kawka and Simoneit, 1987; Didyk and Simoneit, 1989; Clifton et al., 1990, Kvenvolden and Simoneit, 1990; Peter et al., 1991). Hydrocarbon generation occurs in response to the maturation of organic matter caused by hydrothermal fluid convection generally related to magmatic or volcanic activity Unlike sedimentary basins, where oil generation usually occurs within a temperature range of 50–120°C (e.g. Hunt, 1979; Tissot and Welte, 1984) and cracking to natural gas takes place between 150 and 250°C (e.g., Kartsev et al.,1971; Vassoevich et al., 1974), hydrothermal systems can generate oil and petroleum-like products almost instantaneously (Simoneit and Lonsdale, 1982) from organic matter of a wide maturation range (e.g., Simoneit, 1988). As a result, immature biomarkers as well as compounds derived from highly mature organic matter can be found in hydrocarbons from hydrothermal systems.


Fluid Inclusion Carbon Isotope Hydrothermal Fluid Hydrothermal System Vitrinite Reflectance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, P.G., and Hodgson, C.J. (1989) The structure and the geological development of the Erickson gold mine, Cassiar District, British Columbia, with implications for the origin of mother-lode-type gold deposits. Can. J. Earth Sci. 26: 2645–2660.CrossRefGoogle Scholar
  2. Aquino Neto, F.R., Triguis J., Azevedo, D.A., Rodrigues, R. and Simoneit, B.R.T. (1989) Organic geochemistry of geographically unrelated Tasmanites. 14th International Meeting on Organic Geochemistry, Paris, Abstract No. 189.Google Scholar
  3. Barker, C.E. (1991) Implications for organic maturation studies of evidence for geologically rapid increase and stabilization of vitrinite reflectance at peak temperature: Cerro Pricto geothermal system, Mexico. Bull. Am. Assoc. Petrol. Geol. 75: 126–139.Google Scholar
  4. Blumer, M. (1975) Curtisite, idrialite, and pendletonite, polycyclic aromatic hydrocarbon minerals: their composition and origin. Chem. Geol. 16: 245–256.CrossRefGoogle Scholar
  5. Burruss, R.C. (1981) Hydrocarbon inclusions in studies of sedimentary diagenesis. Mineral. Assoc. Can. Short Course Handbook 6: 138–156.Google Scholar
  6. Christopher, P.A., White, W.H. and Harakal, J.E. (1972) Age of molybdenum and tungsten mineralization in northern British Columbia. Can. J. Earth Sci. 9: 1727–1734.CrossRefGoogle Scholar
  7. Church, B.N. (1970) Nadina (Silva Queen), In: Geology Exploration and Mining in British Columbia 1969. British Columbia Ministry of Energy, Mines and Petroleum Resources, pp. 126–139.Google Scholar
  8. Clifton, C.G., Walters, C.C. and Simoneit, B.R.T. (1990) Hydrothermal petroleums from Yellowstone National Park, Wyoming, USA, App. Geochem. 5: 169–191.CrossRefGoogle Scholar
  9. Curiale, J.A. (1985) Origin of solid bitumens with emphasis on biological marker results. Adv. Org. Geochem. 10: 559–580.CrossRefGoogle Scholar
  10. Czochanska, Z., Sheppard, C.M., Weston, R.J., Woolhouse, A.D. and Cood, R.A. (1986) Organic geochemistry of sediments in New Zealand. Part I. A biomarker study of the petroleum seepage at the geothermal region of Waiotapu. Geochim. Cosmochim. Acta. 50: 507–515.CrossRefGoogle Scholar
  11. Degens, E.T. (1966) Biogeochemistry of the stable carbon isotopes. NASA Report, Cr 84046, 1–40.Google Scholar
  12. Didyk, B.M. and Simoneit, B.R.T. (1989) Hydrothermal oil of Guaymas Basin and implications for petroleum formation mechanisms. Nature. 342: 65–69.CrossRefGoogle Scholar
  13. England, P.C. and Thompson, A. (1986) Some thermal and tectonic models for crustal melting in continental collision zones. Geol. Soc. Lond. Spe. Publ., 19: 83–94.CrossRefGoogle Scholar
  14. Evans, C.R., Rogers, M.A. and Bayley, N.J.L. (1971) Evolution and alteration of petroleum in Western Canada. Chem. Geol., 8: 147–170.CrossRefGoogle Scholar
  15. Forster, C. and Smith, L. (1990) Fluid flow in tectonic regimes. In B.E. Nesbitt (ed.) Short Course on Fluids in Tectonically Active Regimes of the Continental Crust. Minerological Association of Canada, 18: 1–48.Google Scholar
  16. Gabrielse, H. (1963) McDame Map-area, Cassiar District, British Columbia. Geol. Surv. Can. Mein. 319: 138 pp.Google Scholar
  17. Gabrielse, H. and Mansy, J.L. (1980) Structural style in north-eastern Cry Lake map area, north-central British Columbia. Geol. Surv. Can. Paper. 80–1A: 33–35.Google Scholar
  18. Geissman, T.A., Sim, K.Y. and Murdoch, J. (1967) Organic minerals. Picene and chrysene as constituents of the mineral curtisite (idrialite). Experientia. 23: 793–794.CrossRefGoogle Scholar
  19. Gelpi, E., Schneider, H., Mann, J. and Ori, J. (1970) Hydrocarbons of geochemical significance in microscopic algae. Phytochemistry. 9: 603–612.CrossRefGoogle Scholar
  20. Gordy, S.P., Gabrielse, H. and Orchard, M.J. (1982) Stratigraphy and structure of the Sylvester allochthon, southwest McDame map area, northern British Columbia. Geol. Surv. Can. Paper. 82–1B: 101–106.Google Scholar
  21. Harms, T. (1985) Pre-emplacement thrust faulting in the Sylvester Allochthon, Northeast Cry Lake area, British Columbia. Geol. Surv. Can. Paper. 85—IA: 301–304.Google Scholar
  22. Hoering, T.C. and Hart, R. (1964) A geochemical study of some Adirondack graphites. Carnegie Inst. Washington Year Book. 633: 256–267.Google Scholar
  23. Hoffman, C.F., Henley, R.W., Higgins, H.C., Solomon, M. and Summons, R.E. (1988) Biogenic hydrocarbons in fluid inclusions from the Aberfoyle tin-tungsten deposit, Tasmania, Australia. Chem. Geol. 70: 287–299.CrossRefGoogle Scholar
  24. Hood, C.T.S. (1991) Mineralogy, paragenesis, and mineralogic zonation of the silver Queen Vein System, Owen Lake, central British Columbia. Unpublished M.Sc. thesis, University of British Columbia, 275 pp.Google Scholar
  25. Hood, C.T.S., Leitch, C.H.B. and Sinclair, A.J. (1991) Mineralogical variation observed at the Silver Queen mine, Owen Lake, central British Columbia (931/2). B.C. Ministry of Energy, Mines and Petroleum Resources. Paper 1991–1: 185–190.Google Scholar
  26. Hooper, D. (1984) A study of gold-quartz veins at Erickson gold camp, Cassiar, north-central British Columbia: Unpublished B. Sc. thesis, University of British Columbia, Vancouver, 96 p.Google Scholar
  27. Horsfield, B. (1984) Pyrolysis studies and petroleum exploration. Adv. Petrol. Geochem. 1: 247–297.Google Scholar
  28. Hunt, J.M. (1979) Petroleum Geochemistry and Geology. W.H. Freeman and Company, San Francisco, 617 pp. Jacob, M. (1989) Classification, structure, genesis and practical importance of natural solid oil bitumen (`migrabitumen’). Int. J. Coal Geol. 11: 65–79.Google Scholar
  29. Jacob, H., Stoppel, D. and Wehner, H. (1981) Untersuchung disperser Bitumina des Westharzes und deren geologische Deutung. Erdol-Erdgas-Z. 97: 182–190.Google Scholar
  30. Kartsev, A.A., Vassoevich, N.B., Geodekian, A.A., Neruchev, S.G. and Sokolov, V.A. (1971) The principal stage in formation of petroleum. Proc. 8th World Petrol. Cong. 2: 3–11.Google Scholar
  31. Kawka, O.E. and Simoneit, B.R.T. (1987) Survey of hydrothermally-generated petroleums from the Guaymas Basin spreading center. Org. Geochem. 11: 311–328.CrossRefGoogle Scholar
  32. Kvenvolden, K.A. and Simoneit, B.R.T. (1990) Hydrothermally derived petroleum: Examples from Guaymas Basin, Gulf of California and Escanaba Trough, Northeast Pacific Ocean. Bull. Am. Assoc. Petrol. Geol. 74: 223–237.Google Scholar
  33. Kvenvolden, K.A., Rapp, J.B., Hostettler, F.D., Morton, J.L., King, J.D. and Claypool, G.J. (1986) Petroleum associated with polymetallic sulfide in sediment from Gorda Ridge. Science. 234: 1231–1234.CrossRefGoogle Scholar
  34. Lang, A.H. (1929) Owen Lake mining camp, British Columbia. Summary Report, 1929, Part A, Geological Survey of Canada, pp. 1–93.Google Scholar
  35. Larter, S.R. (1984) Application of analytical pyrolysis techniques to kerogen characterization and fossil fuel exploration/exploitation. In: K. Voorhees (ed.) Analytical Pyrolysis — Methods and Applications., Butterworth, pp. 212–275.Google Scholar
  36. Leitch, C.H.B. (1991) Preliminary studies of fluid inclusion in barite from the Middle Valley sulfide mounds, northern Juan de Fuca Ridge. Geol. Surv. Can. Paper 91—A: 27–30.Google Scholar
  37. Leitch, C.H.B., Hood, C.T., Cheng, X.-L. and Sinclair, A.J. (1991) Geology of the Silver Queen Mine area, Owen Lake, Central British Columbia. Br. Columbia Ministry of Energy, Mines Petrol. Resources. Paper 1990–1: 287–295.Google Scholar
  38. Leitch, C.H.B., Hood, C.T., Cheng, X.-L. and Sinclair, A.J. (1992) Tip Top Hill Formation: Upper Cretaceous volcanic rocks hosting Eocene epithermal base and precious metal vein at Owen Lake, central British Columbia. Can. J. Earth Sci., 29: 854–864.CrossRefGoogle Scholar
  39. Mackenzie, A.S., Patience, R.L., Maxwell, J.R., Vandenbroucke, M. and Durand, B. (1980) Molecular parameters of maturation in the Toarcian Shales, Paris Basin, France — I. Changes in the configuration of acyclic isoprenoid alkanes, steranes and triterpanes. Geochim. Cosmochim. Acta. 44: 1709–1721.CrossRefGoogle Scholar
  40. Mackenzie, A.S., Hoffman, C.F., and Maxwell, J.R. (1981) Molecular parameters of maturation in the Toarcian shales, Paris basin, France — III. Changes in aromatic steroid hydrocarbons. Geochim. Cosmochim. Acta. 45: 1345–1355.CrossRefGoogle Scholar
  41. Mackenzie, A.S., Maxwell, J.R., Coleman, M.L. and Deepan, C.E. (1984) Biological markers and isotope studies of North Sea crude oils and sediments, Proc. Eleventh World Petrol. Congr. 2: 45–65.Google Scholar
  42. Mastalerz, M., Thomson, M.L., Stankiewicz, A.B., Bustin, R.M. and Sinclair, A.J. (1994) A geochemical study of solid bitumen in an Eocene epithermal deposit; Owen Lake, British Columbia, Canada. Chem. Geol. 115: 249–162.CrossRefGoogle Scholar
  43. Mastalerz, M., Bustin, R.M., Sinclair, A.J. and Stankiewicz, A.B. (1995) Carbon-rich material in the Erickson hydrothermal system, northern British Columbia, Canada; origin and formation mechanisms. Econ. Geol. 90: 938–947.CrossRefGoogle Scholar
  44. Moldowan, J.M., Seifert, W.K. and Gallegos, E. (1985) Relationship between petroleum composition and depositional environment of petroleum source rocks. Bull. Am. Assoc. Petrol. Geol., 69: 1255–1268.Google Scholar
  45. Monger, J.W.H. (1977) Upper Paleozoic rocks of the western Canadian Cordillera and their bearing on Cordilleran evolution. Can. J. Earth Sci. 14: 1832–1859.CrossRefGoogle Scholar
  46. Monger, J.W.H., Price, R.A. and Templeman-Kluit, D.J. (1982) Tectonic accretion and the origin of the major metamorphic and plutonic veins in the Canadian Cordillera: Geology, 10: 70–75.CrossRefGoogle Scholar
  47. M. Mastalerz, R.M. Bustin, A.J. Sinclair, B.A. Stankiewicz and M.G. Thomson Ourisson, G., Albrecht, P. and Rohmer, M. (1982) Predictive microbial biochemistry, from molecular fossils to procaryotic membranes. Trends Biochem. Sci. 7: 236–239.CrossRefGoogle Scholar
  48. Panteleyev, A. (1985) Cassiar map area (104/P). In Geology in British Columbia 1977–1981. British Columbia Ministry of Energy, Mines and Petroleum Resources, pp. 188–190.Google Scholar
  49. Pearcy, E.C. and Burruss, R.C. (1993) Hydrocarbons and gold mineralization in the Hot Spring Deposit at Cherry Hill, California. In J. Parnell, H. Kucha, and P. Landais, (eds) Bitumens in Ore Deposits. Springer-Verlag, Berlin, pp. 117–138.CrossRefGoogle Scholar
  50. Peter, J.M., Simoneit, B.R.T., Kawka, O.E. and Scott, S.D. (1990) Liquid hydrocarbon-bearing inclusions in modern hydrothermal chimneys and mounds from the Southern Guayamas Basin. Appl. Geochem. 5: 51–63CrossRefGoogle Scholar
  51. Peter, J.M., Peltonen, P., Scott, S.D., Simoneit, B.R.T. and Kawka, O.E. (1991) 14C ages of hydrothermal petroleum and carbonate in Guaymas Basin, Gulf of California: implications for oil generation, expulsion and migration. Geology. 19: 253–256.Google Scholar
  52. Peters, K.E. and Moldowan, J.M. (1993) The Biomarker Guide, Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice-Hall, Englewood Cliffs, 363 pp.Google Scholar
  53. Philp, R.P. and Gilbert, T.D. (1985) Biomarker distribution in Australian oils predominantly derived from terrigenous source material. Org. Geochem. 10: 191–197.Google Scholar
  54. Radtke, A.S. and Scheiner, B.J. (1980) Studies of hydrothermal gold deposition, 1. Carlin gold deposit, Nevada: the role of carbonaceous materials in gold deposition. Econ. Geol. 65: 87–102.CrossRefGoogle Scholar
  55. Reynolds, W.N. (1968) Physical Properties of Graphite. Elsevier.Google Scholar
  56. Rogers, M.A., McAlary, J.D. and Bailey, N.J.L. (1974) Significance of reservoir bitumens to thermal maturation studies, Western Canada Basin. Bull. Am. Assoc. Petrol. Geol. 58: 1806–1824.Google Scholar
  57. Schidlowski, M., Hayes, J.M. and Kaplan, I.R. (1983) Isotopic inferences of ancient biochemistries: C, S, H and N. In J.W. Schopf (ed.) Earth’s Earliest Biosphere, Its Origin and Evolution. Princeton University Press, pp. 149–186.Google Scholar
  58. Seifert, W.K. and Moldowan, J.M. (1980) The effect of thermal stress on source-rock quality as measured by hopane stereochemistry. Adv. Org. Geochem. 1979. 229–237.Google Scholar
  59. Seifert, W.K., Moldowan, J.M. and Demaison, G.J. (1984) Source correlation of biodegraded oils. Org. Geochem. 6: 633–643.CrossRefGoogle Scholar
  60. Simoneit, B.R.T. (1983) Organic matter maturation and petroleum genesis: Geothermal versus hydrothermal. Geothermal Res. Council Spe. Rep. 13: 215–241.Google Scholar
  61. Simoneit, B.R.T. (1984) Hydrothermal effects on organic matter — high versus low temperature components. Org. Geochem. 6: 857–864.CrossRefGoogle Scholar
  62. Simoneit, B.R.T. (1988) Petroleum generation in submarine hydrothermal systems: an update. Can. Mineral. 26: 827–840.Google Scholar
  63. Simoneit, B.R.T. (1990) Petroleum generation, an easy widespread process in hydrothermal systems: an overview. Appl. Geochem. 5: 3–15.CrossRefGoogle Scholar
  64. Simoneit, B.R.T. and Lonsdale, P.F. (1982) Hydrothermal petroleum in mineralized mounds at the seabed of Guaymas Basin. Nature. 295: 198–202.CrossRefGoogle Scholar
  65. Simoneit, B.R.T., Grimalt, J.O., Hayes, J.M. and Hartman, H. (1987) Low temperature hydrothermal maturation of organic matter in sediments from the Atlantis II Deep, Red Sea. Geochim. Cosmochim. Acta. 51: 879–894.CrossRefGoogle Scholar
  66. Simoneit, B.R.T., Goodfellow, W.D. and Franklin, J.M. (1992) Hydrothermal petroleum at the seafloor and organic matter alteration in sediments of Middle Valley, northern Juan de Fuca Ridge. Appl. Geochem. 7: 257–264.CrossRefGoogle Scholar
  67. Sinclair, A.J. (1988) Preliminary isotopic study of carbon in gold-quartz veins, Total Erickson Mine, Cassiar District, British Columbia. Report McDAME 104P, B169 — B172.Google Scholar
  68. Sketchley, D.A. (1986) The nature of carbonate alteration in basalt at Erickson gold mine, Cassiar, North-Central British Columbia: unpublished M.Sc Thesis, The University of British Columbia, 238 pp.Google Scholar
  69. Sketchley, D.A. and Sinclair, A.J. (1991) Carbonate alteration in basalt. Total Erickson gold mine, Cassiar, Northern British Columbia, Canada. Econ. Geol. 8: 570–587.CrossRefGoogle Scholar
  70. Sketchley, D.A., Sinclair, A.J. and Godwin, C.I. (1986) Early Cretaceous gold-silver mineralization in the Silvester allochthon near Cassiar, north-central British Columbia. Can. J. Earth Sci. 23: 1455–2458.CrossRefGoogle Scholar
  71. Teichmuller, M. and Teichmuller, R. (1982) The geological basis of coal formation. In: Stach, E., Mackowsky, M.-Th., Teichmuller, M., Taylor, G.H., Chandra, D. and Teichmuller, R. (eds), Coal Petrology, 3rd edn. Gebruder Borntraeger, Berlin-Stuttgart, pp. 5–86.Google Scholar
  72. ten Haven, H.L., de Leeuw, J.W. and Schenck, P.A. (1985) Organic geochemical studies of a Messinian evaporitic basin, northern Apennines (Italy) I. Hydrocarbon biological markers for a hyper-saline environment. Geochim. Cosmochim. Acta. 49: 2181–2191.CrossRefGoogle Scholar
  73. Thomson, M.L. and Sinclair, A.J. (1991) Fluid inclusion study of vein minerals from the Silver Queen mine, central British Columbia. B.C. Ministry of Energy, Mines and Petroleum Resources. Report 1991–1: 287–293.Google Scholar
  74. Thomson, M.L., Mastalerz, M., Sinclair, A.J. and Bustin, R.M. (1992) Fluid source and thermal history of an epithermal vein deposit, Owen Lake, central British Columbia; evidence from bitumen and fluid inclusions. Mineral. Deposita. 27: 219–225.CrossRefGoogle Scholar
  75. Tissot, B.P. and Welte, D.H. (1984) Petroleum Formation and Occurrence, 2nd edn, Springer-Verlag, Berlin, 699 pp.Google Scholar
  76. Vassoevich, N.B., Akramkhodzhaev, A.M., and Geodekyan, A.A. (1974) Principal zone of oil formation. Adv. Org. Geochem. 1973. 309–314.Google Scholar
  77. Vinogradov, A.B. and Kropotova, O.I. (1968) The isotopic fractionation of carbon in geologic processes. Int. Geol. Rev. 9 /10: 497–506.CrossRefGoogle Scholar
  78. Volkman, J.K., Banks, M.R., Denwer, K. and Aquino Neto, F.R. (1989) Biomarker composition and depositional setting of Tasmanites oil shale from northern Tasmania, Australia. 14th International Meeting on Organic Geochemistry, Paris, Abstract No. 168.Google Scholar
  79. Wardroper, A.M.K., Hoffman, C.F., Maxwell, J.R., Barwise, A.J., Goodwin, N.S. and Park, P.J.D. (1984) Crude oil biodegradation under simulated and natural conditions — II. Aromatic steroid hydrocarbons. Org. Geochem. 6: 605–617.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • M. Mastalerz
  • R. M. Bustin
  • A. J. Sinclair
  • B. A. Stankiewicz
  • M. L. Thomson

There are no affiliations available

Personalised recommendations