Skip to main content

Metalloporphyrin composition and a model for the early diagenetic mineralization of the Permian Kupferschiefer, SW Poland

  • Chapter
Organic Matter and Mineralisation: Thermal Alteration, Hydrocarbon Generation and Role in Metallogenesis
  • 504 Accesses

Abstract

The widespread occurrence of geoporphyrins in various organic sediments is well documented (Baker and Louda, 1986a; Bonnett et al., 1987; Chicarelli et al., 1987; Callot et al., 1990; Callot, 1991). Although dominated by etio and DPEP structures, the benzoetio, benzo-DPEP, and other prophyrin structural types have also been recognized to occur in geological samples (Kaur et al., 1986; Quirke et al., 1990). Nickel and/or vanadyl porphyrins are commonly associated with oils and shales, whereas iron and gallium complexes occur mainly in coals. Sources of organic material, depositional environment and the diagenetic processes involved in the alteration of organic matter determine both tetrapyrroles preservation in sediments, and their final structural nature (Barwise and Roberts, 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baas Becking L.G.M. and Kaplan I.R. (1956) Biological processes in the estuarine environment. III. Electrochemical considerations regarding the sulfur cycle. Proc. Koninklijke Nederlandishe Akad. Wetenschappen. Series B. 59: 85–96.

    Google Scholar 

  • Baker E.W. and Louda J.W. (1983) Thermal aspects in chlorophyll geochemistry. Adv. Org. Geoch. 1981 401–421.

    Google Scholar 

  • Baker E.W. and Louda J.W. (1986a) Porphyrins in the geological record. Methods Geochem. Geophy. 24: 125–225.

    Google Scholar 

  • Baker E.W. and Louda J.W. (1986b) Porphyrin geochemistry of Atlantic Jurassic-Cretaceous black shales. Org. Geochem. 10: 905–914.

    Article  Google Scholar 

  • Barwise A.J.G. and Roberts I. (1984) Diagenetic and catagenetic pathways for porphyrins in sediments. Org. Geochem. 6: 167–176.

    Article  Google Scholar 

  • Bechtel A. and Püttmann W. (1991) The origin of the Kupferschiefer-type mineralization in the Richelsdorf hills, Germany, as deduced from stable isotope and organic geochemical studies. Chem. Geol. 91: 1–18.

    Article  Google Scholar 

  • Bechtel A. and Hoernes S. (1993) Stable isotopic variations of clay minerals: A key to the understanding of Kupferschiefer-type mineralization, Germany. Geochim. Cosmochim. Acta. 57: 1799–1816.

    Article  Google Scholar 

  • Biebl H. and Pfenning N. (1979) CO2 -fixation by anaerobic phototrophic bacteria in lakes, a review, Ergebnisse Limnol. Sp. Vol. Arch. Hydrobiol. 12: 18–58.

    Google Scholar 

  • Bonnett, R., Burke P.J. and Czechowski F. (1987) Metalloporphyrins in lignite, coal and calcite. Am. Chem. Soc. Symp. Series. 344: 173–185.

    Article  Google Scholar 

  • Brockmann, H. Jr. (1976) Bacteriochlorophyll-e: Structure and stereochemistry of a new type of chlorophyll from Chlorobiaceae. Phil. Trans. R. Soc., Ser. B: 273: 277–285.

    Google Scholar 

  • Callot H.J. (1991) Geochemistry of chlorophylls. In H. Scheer (ed). Chlorophylls CRC Press, London, pp. 339–346.

    Google Scholar 

  • Callot H.J., Ocampo R., and Albrecht P. (1990) Sedimentary porphyrins: correlation with biological precursors. Energy Fuels. 4: 635–639.

    Article  Google Scholar 

  • Chicarelli M.J., Kaur S. and Maxwell J.R. (1987) Sedimentary porphyrins: unexpected structures, occurrence and possible origins. (Am. Chem. Soc. Symp. Series 344 40–67.

    Article  Google Scholar 

  • Claypool, G.E. and Kaplan J.R. (1974) The origin and distribution of methane in marine sediments. In J.R. Kaplan (ed). Natural Gases in Marine Sediments. Plenum Press, New York, pp. 99–140.

    Chapter  Google Scholar 

  • Clezy P.S. and Mirza A.H. (1982) The chemistry of pyrrolic compounds. XLIX Further observations on the chemistry of the benzoporphyrins. Aust. J. Chem. 35: 197–209.

    Article  Google Scholar 

  • Czechowski F. and Raczyfiski P. (1996) Obserwacje paleoekologiczne a geochemiczny model wczesnodiagenetycznej mineralizacji siarczkowej w osadach dolnego cechsztynu. Przeglad Geol. 44: 621–625.

    Google Scholar 

  • Eckardt C.B., Wolf M., and Maxwell J.R. (1989) Iron porphyrins in the Permian Kupferschiefer of Lower Rhine Basin, N.W. Germany. Org. Geochem. 14: 659–666.

    Article  Google Scholar 

  • Eckardt C.B., Keely B.J., Waring J.R., Chicarelli M.I. and Maxwell J.R. (1991) Preservation of chlorophyll-derived pigments in sedimentary organic matter. Phil. Trans. Royal. Soc. Ser. B. 333: 339–348.

    Google Scholar 

  • Grice K., Schwark L., Schaeffer P., Eckard C.B. and Maxwell J. (1995) Stable carbon isotopic compositions and distributions of biomarkers in the Permian Kupferschiefer. In: J.O. Grimald et al. (eds) Organic Geochemistry: Developments and applications to energy, environment and human history. 17th International Meeting on Organic Geochemistry 4–8 September, Donostia, San Sebastian, Spain, pp. 61–64.

    Google Scholar 

  • Haraficzyk C. (1986) Zechstein copper-bearing shales in Poland: Lagoonal environments and the sapropel model of genesis. In G.H. Friedrich et al. (eds) Geology and Metallogeny of Ore Deposits. Springer, Berlin, pp. 461–476.

    Google Scholar 

  • Jowett E.C. (1986) Genesis of Kupferschiefer Cu-Ag deposits by connective flow of Rotliegende brines during Triassic rifting. Econ. Geol. 81: 1823–1837.

    Article  Google Scholar 

  • Kaur S., Chicarelli M.I. and Maxwell J.R. (1986) Naturally occurring benzoporphyrins: Bacterial marker pigments? J. Am. Chem. Soc. 108: 1347–1348.

    Article  Google Scholar 

  • Keely B.J. and Maxwell J.R. (1993) The Mulhouse basin: evidence from porphyrin distribution for water column anoxia during deposition of marls. Org. Geochem. 20: 1217–1225.

    Article  Google Scholar 

  • Klapciüski J. (1991) Zechstein anhydrides in western Poland. Zbl. Geol. Paläont. H. 4: 1171–1188.

    Google Scholar 

  • La Mar G.N., Viscio D.B., Smith K.M., Caughey W.S. and Smith M.L. (1978) NMR studies of low spin ferric complexes in natural prophyrin derivatives I. Effect of peripheral substituents on the II electronic asymmetry in biscyano complexes. J. Am. Chem. Soc. 100: 8085–8092.

    Article  Google Scholar 

  • Lewan M.D. (1984) Factors controlling the proportionality of vanadium and nickel in crude oils. Geochim. Cosmochim. Acta 48: 2231–2238.

    Article  Google Scholar 

  • Oberc J. and Serkies J. (1968) Evolution of the Fore-Sudetian copper deposit. Econ. Geol. 63: 372–379.

    Article  Google Scholar 

  • Orr, W.L. and Gaines, A.G. (1974) Observations on the rate of sulfate reduction and organic matter oxidation in the bottom waters of an estuarine basin: the upper of the Pattaquamscutt River (Rhode Island). Adv. Org. Geoch. 1973. 791–812.

    Google Scholar 

  • Oszczepalski S. and Rydzewski A. (1987) Paleogeography and sedimentary model of the Kupferschiefer in Poland. Lect. Not. Earth Sci. 10: 189–205.

    Article  Google Scholar 

  • Püttmann W., Hagemann, H.W., Merz C. and Speczik S. (1988) Influence of organic material on mineralization process in the Permian Kupferschiefer Formation, Poland. Org. Geochem. 13: 357–363.

    Article  Google Scholar 

  • Püttmann W., Merz C. and Speczik S. (1989) The secondary oxidation of organic material and its influence on Kupferschiefer Mineralization of southwest Poland. Appl. Geochem. 4: 151–161.

    Article  Google Scholar 

  • Püttmann W., Heppenheimer H. and Diedel R. (1990) Accumulation of copper in the Permian Kupferschiefer: A result of postdepositional redox reactions. Org. Geochem. 16: 1145–1156.

    Article  Google Scholar 

  • Püttmann W., Fermont W.J.J. and Speczik S (1991a) The possible role of organic matter in transport and accumulation of metals exemplified at the Permian Kupferschiefer formation. Ore Geol. Rev. 6: 563–579.

    Article  Google Scholar 

  • Püttmann W., Merz C. and Speczik S. (1991b) Oxidation of organic material in the Kupferschiefer and its relation to mineralization process. Zbl. Geol. Paläont. H.4, 957–974.

    Google Scholar 

  • Quirke J.M.E., Dale T., Britton E.D., Yost R.A., Trichet J. and Belayouni H. (1990) Preliminary characterization of porphyrins from the Gafsa Basin, Tunisia: Evidence for metal-free benzoporphyrins from an immature sediment. Org. Geochem. 15: 169–177.

    Article  Google Scholar 

  • Sawlowicz A. (1985) Significance of metalloporphyrins for the metals accumulation in the copper-bearing shales from the Zechstein copper deposits (Poland). Mineral. Polo. 16: 35–42.

    Google Scholar 

  • Sawlowicz Z. (1989) On the origin of copper mineralization in the Kupferschiefer: a sulfur isotope study. Terra Nova. 1: 339–343.

    Article  Google Scholar 

  • Sawlowicz Z. and Wedepohl K.H. (1992) The origin of rhythmic sulphide bands from Permian sandstones. (Weissliegendes) in the footwall of the Fore-Sudetic ‘Kupferschiefer’ (Poland). Mineral. Deposita. 27: 242–248.

    Article  Google Scholar 

  • Serkies J., Oberc J. and Idzikowski A. (1967) The geochemical bearings of the genesis of Zechstein copper deposits in Southwest Poland as exemplified by the studies on the Zechstein of the Leszczyna syncline. Chem. Geol. 2: 217–232.

    Article  Google Scholar 

  • Smith K.M., Kehres L.A. and Tabba H.D. (1980) Structure of the bacteriochlorophyll-c homologues — solution to a longstanding problem. J. Am. Chem. Soc. 102: 7149–7159.

    Article  Google Scholar 

  • Sorokin Yu. I. (1970) Interrelation between sulfur and carbon turnover in a meromitic lake. Arch. Hydrobio. 66: 391–446.

    Google Scholar 

  • Speczik S. (1988) Relation of Permian base metal occurrences to the variscan paleogeothermal field of the Fore-Sudetic Monocline (southwestern Poland). SGA Spec. Publ. 6: 12–24.

    Google Scholar 

  • Speczik S., and Püttmann W. (1987) Origin of Kupferschiefer mineralization as suggested by coal petrology and organic geochemical studies. Acta Geol. Pol. 37: 167–187.

    Google Scholar 

  • Stainer, G. Y., and Smith, J.H.C. (1960) Chlorophylls of green bacteria. Biochim. Biophys. Acta. 41: 478–484. Summons R. E. and Powell T.G. (1986) Chlorobiaceae in Paleozoic seas revealed by biological markers, isotopes and geology. Nature. 319: 763–765.

    Google Scholar 

  • Sundararaman P. (1993) On the mechanism of change in DPEP/ETIO ratio with maturity. Geochim. Cosmochim. Acta. 57: 4517–4520.

    Google Scholar 

  • Tynan, E.C. and Yen T.F. (1970) General purpose computer program for exact ESR spectrum calculations with applications to vanadium chelates. J. Magn. Reson. 3: 327–335.

    Google Scholar 

  • Vaughan D.J., Sweeney M., Friedrich G., Diedel R. and Haranczyk C. (1989) The Kupferschiefer: An overview with an appraisal of the different types of mineralization. Econ. Geol. 84: 1003–1027.

    Google Scholar 

  • Von Hammer J., Junge F. und Stiehl G. (1989) Isotopengeochemische (C, N, O) Untersuchungen an Kupferschieferprofilen unterschiedlicher fazieller Position. Chem. Erde. 49: 137–153.

    Google Scholar 

  • Wazny H. (1967) Trace elements in the Zechstein of Western Poland Bull. Inst. Geol. 213 5–83.

    Google Scholar 

  • Wedepohl K.H. (1964) Untersuchungen am Kupferschiefer in Nordwestdeutschland; Ein Beitrag zur Deutung der Genese bituminöser Sedimente. Geochim. Cosmochim. Acta. 28: 305–364.

    Google Scholar 

  • Wedepohl K.H. (1971) Kupferschiefer as a prototype of syngenetic sedimentary ore deposits. Soc. Min. Geol. Japan S. Issue. 3: 268–273.

    Google Scholar 

  • Wolf M., David P., Eckardt C.B., Hagemann H.W. and Püttmann W. (1989) Facies and rank of the Permian Kupferschiefer from the Lower Rhine Basin and NW Germany. Int. J. Coal Geol. 14: 119–136.

    Article  Google Scholar 

  • Yawanarajah S.R., Kruge M.A., Mastalerz M. and Sliwifski W. (1993) Organic geochemistry of Permian organic-rich sediments from the Sudetes area, SW Poland. Org. Geochem. 20: 267–281.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Czechowski, F. (2000). Metalloporphyrin composition and a model for the early diagenetic mineralization of the Permian Kupferschiefer, SW Poland. In: Glikson, M., Mastalerz, M. (eds) Organic Matter and Mineralisation: Thermal Alteration, Hydrocarbon Generation and Role in Metallogenesis. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9474-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9474-5_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4019-0

  • Online ISBN: 978-94-015-9474-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics