Organic matter from Zechstein copper deposits (Kupferschiefer) in Poland

  • Z. Sawlowicz
  • A. P. Gize
  • M. Rospondek
Chapter

Abstract

The Kupferschiefer is both one of the world’s most extensive and historic Cu—Fe—S—(Ag) deposits, with mineable concentrations located within the present borders of Germany and Poland. The grades in the Lubin (Poland) and Mansfeld-Sangerhausen (Germany) districts are both in excess of 2% Cu, and approximately 150 g/t and 30–80 g/t Ag, respectively (Kirkham, 1989). It is also a mining region well established historically. The Kupferschiefer has been mined in the eastern part of the North Sudetic Trough since the fifteenth century (Speczik et al., 1997). Agricola (1556) provided a detailed description of the Mansfeld cupriferous slates, or the Kupferschiefer. Following is a description of the overlying strata, ‘last of all, lies the cupriferous stratum, black coloured and schistose, in which there sometimes glitter scales of gold-coloured pyrites in the very thin sheets, which ... often take the forms of various living things.’ Agricola (1556) further described the smelting of the bitumenous shales, by seven repeated smeltings, which finally provided a slag containing both copper and silver.

Keywords

Copper Deposit Bacterial Sulphate Reduction Iron Porphyrin Copper Sulphide Vanadyl Porphyrin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agricola, G. (1556) De Re Metallica. Translated by Hoover, H.C. and Hoover, L.H., Dover Publications, New York, pp. 638.Google Scholar
  2. Baranger, P., Disnar, J.R., Gatellier, J.P. and Ouzounian, G. (1991) Metal reduction by sedimentary organic materials: influence of medium parameters on the reaction rate. In M. Pagel and J.L. Leroy (eds) Source, Transport and Deposition of Metals. 25th SGA Meeting, Balkema, Rotterdam, 511–514.Google Scholar
  3. Barnes, H.L. (1975) Zoning of ore deposits: Types and causes. Trans. Royal Soc. Edinburgh 69: 295–311.CrossRefGoogle Scholar
  4. Bechtel, A. and Püttmann, W. (1991) The origin of the Kupferschiefer-type mineralization in the Richelsdorf hills, Germany, as deduced from stable isotope and organic geochemical studies. Chem. Geol., 91: 1–18.CrossRefGoogle Scholar
  5. Bowles, J.F.W., Gize, A.P. and Cowden, A. (1994) The mobility of the platinum-group elements in the soils of the Freetown Peninsula, Sierra Leone. Can. Miner., 32: 957–968.Google Scholar
  6. Czechowski, F. and Raczynski, P. (1996) Palaeoecological observations and geochemical model of early diagenetic sulphide mineralization in the lower Zechstein deposits. Przeglad Geol. 44: 621–625 (in Polish).Google Scholar
  7. Didyk, B.M., Simoneit, B.R.T., Brasell, S.C. and Eglinton, G. (1978) Organic geochemical indicators of paleoenvironmental conditions of sedimentation. Nature. 272: 216–222.CrossRefGoogle Scholar
  8. Disnar, J.R. (1981) Etude experimentale de la fixation de metaux par un materiau sedimentaire actuel d’origine algaire-II. Fixation ‘in vitro’ de UO2, Cu, Ni, Pb, Co, Mn, ainsi que de V03, Mo04, et GeO3. Geochim. Cosmochim. Acta. 45: 363–379.CrossRefGoogle Scholar
  9. Disnar, J.R. and Sureau, J.F. (1990) Organic matter in ore genesis: Progress and perspectives. Org. Geochem. 16: 577–599.CrossRefGoogle Scholar
  10. Eckardt, C.B., Wolf, M. and Maxwell, J.R. (1989) Iron porphyrins in the Permian Kupferschiefer of the Lower Rhine Basin, N, W. Germany. Org. Geochem. 14: 659–666.CrossRefGoogle Scholar
  11. Garlick, W.G. (1989) Genetic Interpretation from Ore Relations to Algal Reefs in Zambia and Zaire. Geol. Assoc. Can. Sp. Paper. 36: 471–498.Google Scholar
  12. Giordano, T.H. (1985) A preliminary evaluation of organic ligands and metal-organic complexing in Mississippi Valley-Type ore solutions. Econ. Geol. 80: 96–106.CrossRefGoogle Scholar
  13. Gize, A.P. (1994) Hydrocarbon alteration in ore deposits: Resource Geol. Sp. Iss. 15: 135–140.Google Scholar
  14. Gize, A.P. and Barnes, H.L. (1994) Organic contributions to Mississippi Valley-Type lead-zinc genesis–a criti-cal assessment. In: L. Fontbote and M. Boni (eds). Sediment-hosted Zn-Pb Ores. Springer-Verlag, pp. 13–26.Google Scholar
  15. Goossens, H., de Leeuw, J.W., Schenck, P.A. and Brassel, S.C. (1984) Tocopherols as likely precursors of pristane in ancient sediments and crude oils. Nature. 312: 440–442.CrossRefGoogle Scholar
  16. Gustafson, L.B. and Williams, N. (1981) Sediment-hosted stratiform deposits of copper, lead and zinc. Econ. Geol. 75th Anniversary Volume: 139–178.Google Scholar
  17. Hammer, J., Roesler, H.J. and Gleisberg, B. (1988) Neutronenaktivierungs analytische, saeulenchromatographische and IR-spektroskopische Untersuchungen der Bitumensubstanz des Kupferschiefers der Sangerhaeuser Mulde (DDR). Chem. Erde. 48: 61–78.Google Scholar
  18. Hammer, J., Junge, F. and Stiehl, G. (1989) Isotopengeochemische (C, N, O) Untersuchungen an Kupferschieferprofilen unterschiedlischer fazieller Position. Chem. Erde. 49: 137–153.Google Scholar
  19. Haranczyk, C. (1972) Ore mineralization in euxinic Lower Zechtein deposits from the Fore Sudetic Monocline. Arch. Mineral. 30: 13–173 (in Polish).Google Scholar
  20. ten Haven, L.H., de Leeuw, J.W., Rullkotter, J. and Sinninghe Damste, J.S. (1987) Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator. Nature. 330: 641–643.CrossRefGoogle Scholar
  21. Ho, E.S., Meyers, P.A., and Mauk, J.L. (1990) Organic geochemical study of mineralization in the Keweenan Nonesuch Formation at White Pine, Michigan. Org. Geochem. 16: 229–234.CrossRefGoogle Scholar
  22. Hoy, L.D. and Ohmoto, H. (1989) Constraints for the genesis of redbed-associate stratiform Cu deposits from sulphur and carbon mass-balance relations. Geol. Assoc. Can. Sp. Paper. 36: 135–149.Google Scholar
  23. Jowett, E.C. (1986) Genesis of Kupferschiefer Cu—Ag deposits by convective flow of Rotliegendes brines during Triassic rifting. Econ. Geol. 81: 1823–1837.CrossRefGoogle Scholar
  24. Jowett, E.C., Pearce, G.W. and Rydzewski, A. (1987) Formation of sulfide-calcite veinlets in the Kupferschiefer Cu—Ag deposits in Poland by natural hydrofracturing during basin subsidence. J. Geol. 95: 513–526.CrossRefGoogle Scholar
  25. Kettler, R.M., Giordano, T.H. and Wood, S.A. (1997) Ore Genesis and Exploration: The Roles of Organic Matter. 1997 SEG Short Course, 17–18 October 1997, Utah.Google Scholar
  26. Kirkham, R.V. (1989) Distribution, settings and genesis of sediment-hosted stratiform copper deposits. Geol. Assoc. Can. Sp. Paper, 36: 3–38.Google Scholar
  27. Kirst, G. (1994) Lagerstaettenkundlich geochemische Untersuchungen an Kupferschiefer-profilen im Lagerstaettenbereich der Vorsudetischen Monokline/SW-Polen. Dipl. Arbeit. Bonn, pp. 160.Google Scholar
  28. Kodina, L.A. and Galimov, E.M. (1982) Isotopic composition of the carbon (humic and sapropelic) of organic matter from marine sediments. In: IX Symp. Stable Isotopes in Geochemistry. Vernadski Institute, Moscov, 23–25 (in Russian).Google Scholar
  29. Kucha, H. (1976) Organic matter, Au, Ni and Co in Zechstein deposits of the Fore-Sudetic Monocline. Ann. Pol. Geol. Soc. 46: 363–410 (in Polish).Google Scholar
  30. Kucha, H. (1981) Precious metal alloys and organic matter in the Zechstein copper deposits, Poland. Tschermaks Min. Petr. Mitt. 28: 1–16.CrossRefGoogle Scholar
  31. Kucha, H. (1982) Platinum-group metals in the Zechstein copper deposits, Poland. Econ. Geol. 77: 1578–1591.CrossRefGoogle Scholar
  32. Kucha, H. and Wieczorek, A. (1988) Graphite in Kupferschiefer, Poland, and its genetic meaning. Mineral. Deposita. 23: 178–184.CrossRefGoogle Scholar
  33. Kucha, H., Mayer, W. and Piestrzynski, A. (1983) Vanadium in the copper ore deposit on the Fore-Sudetic Monocline. Mineral. Pol. 14: 35–43.Google Scholar
  34. Kucha, H., Przyblowicz, W., Lankosz, M., van Langevelde, F. and Traxel, K. (1993) EPMA, micro-PIXE, synchrotron microprobe and TEM study of visible and invisible accumulations of Au and PGE in black shale and organic matrix, Kupferschiefer, Poland. Min. Mag. 57: 103–112.CrossRefGoogle Scholar
  35. Landais, P. and Gize, A.P. (1997) Organic matter in hydrothermal systems. In: H.L. Barnes (ed.) The Geochemistry of Hydrothermal Ore Deposits. J. Wiley & Sons, New York, pp. 613–655.Google Scholar
  36. Large, D.J. and Gize, A.P. (1996) Pristane/phytane ratios in the mineralised Kupferschiefer of the ForeSudetic Monocline, southwest Poland. Ore Geol. Rev. 11: 89–103.CrossRefGoogle Scholar
  37. Large, D.J., MacQuaker, J., Vaughan, D.J., Sawlowicz, Z. and Gize, A.P. (1995) Evidence for low-temperature alteration of sulphides in the Kupferschiefer copper deposits of southwestern Poland. Econ. Geol. 90: 2143–2155.CrossRefGoogle Scholar
  38. Leventhal, J.S. (1986) Roles of organic matter in ore deposits. In: W.E. Dean (ed.) Organic and Ore Deposits. The Denver Region Exploration Geologists Society Symposium, pp. 7–20.Google Scholar
  39. Marowsky, G. (1969) Schwefel-, Kohlenstoff-and Sauerstoffisotopenuntersuchungen aus Kupferschiefer als Beitrag zur genetischen Deutung. Contr. Miner. Petrol. 22: 290–334.CrossRefGoogle Scholar
  40. Mayer, W. and Piestrzynski, A. (1985) Ore Minerals from Lower Zechstein Sediments at the Rudna Mine, Fore-Sudetic Monocline, SW Poland. Mineral. Trans. 75: 1–72.Google Scholar
  41. Michalik, M. (1995). Diagenesis of the Weissliegendes sandstones in the Fore-Sudetic Zechstein copper deposit (Poland). In: J. Pasava et al. (eds) Mineral Deposits: From Their Origin to Their Environmental Impacts. A.A. Balkema. Rotterdam, pp. 957–960.Google Scholar
  42. Nakashima, S. (1991) Kinetics and thermodynamics of U reduction by natural and simple organic matter. Org Geochem. 19: 421–430.CrossRefGoogle Scholar
  43. Nakashima, S., Disnar, J.-R., Perruchet, A. and Trichet, J. (1984) Experimental study of mechanism of fixation and reduction of uranium by sedimentary organic matter under diagenetic or hydrothermal conditions. Geochim. Cosmochim. Acta. 48: 2321–2329.CrossRefGoogle Scholar
  44. Obere, J. and Serkies, J. (1968) Evolution of the Fore-Sudetian copper deposit. Econ. Geol. 63: 372–379.CrossRefGoogle Scholar
  45. Ohmoto, H. and Lasaga, A.C. (1982) Kinetics of reactions between aqueous sulphates and sulphides in hydrothermal systems. Geochim. Cosmochim. Acta 46: 1727–1745.CrossRefGoogle Scholar
  46. Oszczepalski, S. (1986) On the Zechstein copper shale lithofacies and paleoenvironments in SW Poland. Geol. Soc. Spec. Publ. 22: 171–182.CrossRefGoogle Scholar
  47. Oszczepalski, S. (1989) Kupferschiefer in Southwestern Poland: sedimentary environments, metal zoning, and ore controls. Geol. Assoc. Can. Sp. Paper. 36: 571–600.Google Scholar
  48. Oszczepalski, S. and Rydzewski, A. (1991) The Kupferschiefer mineralisation in Poland. Zentralblatt Geol. Paleontol. 1: 975–999.Google Scholar
  49. Parnell, J., Kucha, H. and Landais, P. (1993) (eds) Bitumens in Ore Deposits. Springer—Verlag, Berlin Heidelberg, 520 pp.Google Scholar
  50. Piestrzynski, A. (1990) Uranium and thorium in the Kupferschiefer formation, Lower Zechstein, Poland. Mineral Deposita. 25: 146–151.CrossRefGoogle Scholar
  51. Piestrzynski, A., Pieczonka, J., Speczik, S., Osczepalski, S. and Banaszak, A. (1997) Noble metals from the Kupferschiefer-type deposits, Lubin-Sieroszowice, SW Poland. In: H. Papunen (ed.) Mineral Deposits: Research and Exploration—Where do They Meet? A.A. Balkema, Rotterdam, pp. 563–566.Google Scholar
  52. Püttmann, W. and Gossel, W. (1990) The Permian Kupferschiefer of southwest Poland: a geochemical trap for migrating, metal-bearing solutions. Appl. Geochem. 5: 227–235.CrossRefGoogle Scholar
  53. Püttmann, W., Hagemann, H.W., Merz C. and Speczik S. (1987) Influence of organic material on mineralization processes in the Permian Kupferschiefer Formation. Org. Geochem. 13: 357–363.CrossRefGoogle Scholar
  54. Püttmann, W., Hagemann, H.W., Merz, C. and Speczik, S. (1988) Influence of organic matter on mineralization processes in the Permian Kupferschiefer Formation, Poland. Org. Geochem. 14: 357–363.CrossRefGoogle Scholar
  55. Püttmann, W., Merz, C. and Speczik, S. (1989) The secondary oxidation of organic material and its influence on Kupferschiefer mineralization of southwest Poland. Appl. Geochem. 4: 151–161.CrossRefGoogle Scholar
  56. Püttmann, W., Fermont, W.J.J., and Speczik, S. (1991a) The possible role of organic matter in transport and accumulation of metals exemplified at the Permian Kupferschiefer formation. Ore Geol. Rev. 6: 563–579.CrossRefGoogle Scholar
  57. Püttmann, W., Merz, C. and Speczik, S. (1991b) Oxidation of organic material in the Kupferschiefer and its relation to mineralization processes. Zbl. Geol. Palaeont. 4: 957–974.Google Scholar
  58. Radtke, M., Welte, D.H. and Willsch, H. (1982) Geochemical study on a well in the Western Canada Basin: relation of the aromatic distribution pattern to maturity of organic matter. Geochim. Cosmochim. Acta. 46: 1–10.CrossRefGoogle Scholar
  59. Read, H.H. and Watson, J. (1975) Introduction to Geology, Earth History, vol. 2. MacMillan Press Ltd., London, pp. 371 pp.Google Scholar
  60. Rentzsch, J. (1974) The Kupferschiefer in comparison with the deposits of Zambian Copperbelt. In: P. Bartholome (ed.) Gisements Stratiformes et Provinces Cupriferes. Liege: Soc. Geol. Belge, 395–418.Google Scholar
  61. Rentzsch, J., Schirmer, B., Roelling, G. and Tischendorf, G. (1976) On the metal source of non-ferrous mineralizations in the Zechstein basement (Kupferschiefer type). In: J. Fedak (ed.) The Current Metallogenic Problems of Central Europe. Geol. Inst., Warsaw, pp. 171–188.Google Scholar
  62. Rose, A.W. (1989) Mobility of copper and other heavy metals in sedimentary environments. Geol. Assoc. Can. Sp. Paper. 36: 97–110.Google Scholar
  63. Rospondek, M. (1998). Origin and role of organic sulphur compounds in the stratiform copper deposits of the Fore-Sudetic Monocline. Ph.D. Thesis, Jagiellonian University, Krakow, 145 pp (in Polish).Google Scholar
  64. Rospondek, M.J., Fijalkowska, A. and Lewandowska, A. (1993) The origin of organic matter in Lower Silesian copper-bearing shales. Ann. Soc. Geol. Polon. 63: 85–99.Google Scholar
  65. Rospondek, M.J., de Leeuw, J.W., Baas, M., van Bergen, P.F. and Leereveld, H. (1994) The role of organically bound sulphur in stratiform ore sulphide deposits. Org Geochem. Geochem. 21: 1181–1191.CrossRefGoogle Scholar
  66. Rydzewski, A. (1978) Oxidized facies of the Zechstein copper-bearing shale from the Fore-Sudetic mono-cline. Przeglad. Geol. 2: 102–108 (in Polish).Google Scholar
  67. Ryka, W. (1989) Rotliegendes volcanics, sediment lithologies and paleoenvironments, and Polish Basin history: an overview. Geol. Assoc. Can. Sp. paper, 36: 627–633.Google Scholar
  68. Sawlowicz, Z. (1985) Significance of metalloporphyrins for the metal accumulation in the copper-bearing shales from the Zechstein copper deposits. Mineral. Pol. 16: 35–42.Google Scholar
  69. Sawlowicz, Z. (1989a) Organic matter in the Zechstein in Kupferschiefer from the Fore-Sudetic Monocline. I. Bitumen. Mineral. Pol. 20: 69–86.Google Scholar
  70. Sawlowicz, Z. (1989b) Isotopic composition of C, O, S from the organic-rich copper-bearing shale from the Kupferschiefer in Poland. Arch. Mineral. 44: 5–19.Google Scholar
  71. Sawlowicz, Z. (1989c) On the origin of copper mineralization in the Kupferschiefer: a sulphur isotope study. Terra Nova. 1: 339–343.CrossRefGoogle Scholar
  72. Sawlowicz, Z. (1990) Primary copper sulphides from the Kupferschiefer, Poland. Mineral. Deposita, 25: 262–271.CrossRefGoogle Scholar
  73. Sawlowicz, Z. (199la) Organic matter in the Zechstein Kupferschiefer from the Fore-Sudetic Monocline. II. Kerogen. Mineral. Pol. 22: 49–67.Google Scholar
  74. Sawlowicz, Z. (1991b) The relationship between copper mineralization and organic matter in the Polish Kupferschiefer. In: M. Pagel and J.L. Leroy (eds). In: Source, Transport and Deposition of Metals. A.A. Balkema. Rotterdam, pp. 589–592.Google Scholar
  75. Sawlowicz, Z. (1992) Primary sulphides in the Cu—Fe—S zones of the Kupferschiefer Bed, Fore-Sudetic Monocline, Poland. Trans. Inst. Min. Met., 101: B1 — B8.Google Scholar
  76. Sawlowicz, Z. (1993a) Organic matter and its significance for the genesis of the copper-bearing shales (Kupferschiefer) from the Fore-Sudetic monocline (Poland). In: J. Parnell et al. (eds). Bitumens in Ore Deposits Springer—Verlag, Berlin, pp. 431–446.Google Scholar
  77. Sawlowicz, Z. (1993b) Iridium and other platinum-group elements as geochemical markers in sedimentary environments. Palaeogeogr. Palaeoclimatol. Palaeoecol 104: 253–270.CrossRefGoogle Scholar
  78. Sawlowicz, Z. and Kosacz, R. (1995) On the origin of high-grade copper ores in the Weissliegendes elevations from the Polish Kupferschiefer deposits. In: J. Pasava et al. (eds). Mineral Deposits: From Their Origin to Their Environmental Impacts. A.A. Balkema. Rotterdam, pp. 977–980.Google Scholar
  79. Sawlowicz, Z. and Wedepohl, K.H. (1992) The origin of rhythmic sulphide bands from the Permian sandstones (Weissliegendes) in the footwall of the Fore-Sudetic ‘Kupferschiefer; (Poland). Mineral. Deposita. 27: 242–248.CrossRefGoogle Scholar
  80. Saxby, J.D. (1976) The significance of organic matter in ore genesis. In: K.H. Wolf (ed.). Handbook of Strata-bound and Stratiform Ore Deposits, vol. 2. Elsevier, pp. 111–133.Google Scholar
  81. SCEP (1981) International Symposium Central European Permian, Jablonna, April 27–29, 1978, Proceedings, Wydawnictwa Geologiczne, Warsaw, 656.Google Scholar
  82. Schouten, S., van Driel, G.B., Sinninghe Damste, J.S. and de Leeuw, J.W. (1993) Natural sulphurization of ketones and aldehydes: A key reaction in the formation of organic sulphur compounds. Geochim. Cosmochim. Acta. 57: 5111–5116.CrossRefGoogle Scholar
  83. Schwark, L. and Püttmann, W. (1990) Aromatic hydrocarbon composition of the Permian Kupferschiefer in the Lower Rhine Basin, NW Germany. Org. Geochem. 16: 749–761.CrossRefGoogle Scholar
  84. Sinninghe Damste, J.S. and de Leeuw, J.W. (1990) Analysis, structure and geochemical significance of organically-bound sulphur in geosphere: State of the art and future research. Org Geochem. 16: 1077–110.CrossRefGoogle Scholar
  85. Speczik, S. (1988) Relation of Permian base metal occurrences to the Variscan paleogeothermal field of the Fore-Sudetic Monocline (Southwestern Poland). In: G.H. Friedrich and P.M. Herzig (eds). Base Metal Sulfide Deposits. Springer Verlag, Berlin, pp. 12–23.Google Scholar
  86. Speczik, S. (1993) The origin of Kupferschiefer mineralization in the Variscan Fold belt of southwestern Poland. In: R.A. Hayer et al. (eds) Rhenohercynian and Subvariscan Fold Belts VI, Vieweg Publ., Braunschweig, pp. 369–384.Google Scholar
  87. Speczik, S. (1994) Kupferschiefer mineralization in the light of organic geochemistry and coal petrology studies. Geol. Q. 38: 639–650.Google Scholar
  88. Speczik, S. (1995) The Kupferschiefer mineralization of Central Europe: New aspects and major areas of future research. Ore Geol. Rev. 9: 411–426.CrossRefGoogle Scholar
  89. Speczik, S. and Püttmann, W. (1987) Origin of Kupferschiefer mineralization as suggested by coal petrology and organic geochemical studies. Acta Geol. Pol. 37: 167–187.Google Scholar
  90. Speczik, S., Rydzewski, A., Oszczepalski, S. and Piestrzynski, A. (1997) Exploration for Cu-Ag and Au-Pt-Pd Kupferschiefer-type deposits in SW Poland. In: H. Papunen (ed.) Mineral Deposits: Research and Exploration–Where do They Meet? A.A. Balkema, Rotterdam, 119–122.Google Scholar
  91. Sun, Y., Püttmann, W. and Speczik, S. (1995) Differences in the depositional environment of basal Zechstein in southwest Poland: implication for base metal mineralization. Org. Geochem. 23: 819–835.CrossRefGoogle Scholar
  92. ten Haven, L.H., de Leeuw, J.W., Rullkotter, J. and Sinninghe Damste, J.S. (1987) Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator. Nature. 330: 641–643.CrossRefGoogle Scholar
  93. Tissot, B. and Welte, D. (1984) Petroleum Formation and Occurrence. 2nd edn., Springer, Berlin, 365 pp.Google Scholar
  94. Tokarska, K. (1971) Geochemical characteristics of bitumens from the Zechstein copper shales. Geol. Qt., 15: 67–76 (in Polish).Google Scholar
  95. Trudinger, P.A., Lambert, I.B. and Skyring, G.W. (1972) Biogenic sulfide ores: a feasibility study. Econ. Geol. 67: 1114–1127.CrossRefGoogle Scholar
  96. Wedepohl, K.H. (1964) Untersuchungen am Kupferschiefer in Nordwestdeutschland. Ein Beitrag zur Deutung der genese bituminoeser Sedimente. Geochim. Cosmochim. Acta. 28: 305–364.CrossRefGoogle Scholar
  97. Wedepohl, K.H. (1994) Composition and origin of the Kupferschiefer bed. Geol. Q., 38: 623–638.Google Scholar
  98. Wodzicki, A. and Piestrzynski, A. (1994) An ore genetic model for the Lubin-Sieroszowice mining district, Poland. Mineral. Deposita. 29: 30–43.Google Scholar
  99. Wolf, M., David, P., Eckardt, C.B., Hagemann, H.W. and Püttmann, W. (1989) Facies and rank of the Permian Kupferschiefer from the Lower Rhine Basin and NW Germany. Int. J. Coal. Geol. 14: 119–136.CrossRefGoogle Scholar
  100. Yawanarajah, S.R., Kruge, M., Mastalerz, M. and Sliwinski, W. (1993) Organic geochemistry of Permian organic-rich sediments from the Sudetes area, Poland. Org. Geochem. 20: 267–281.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Z. Sawlowicz
  • A. P. Gize
  • M. Rospondek

There are no affiliations available

Personalised recommendations