Skip to main content

Corpuscular Chemistry in the Last Decades of the Seventeenth Century

  • Chapter
Elements, Principles and Corpuscles

Abstract

In the present chapter I set out to investigate the chemists’ theories of matter and the fortuna of Boyle’s chemical ideas in late seventeenth-century Europe. Though Gassendi’s and — to a lesser extent — Descartes’s theories of matter influenced late seventeenth-century chemistry, the impact of Boyle’s corpuscular philosophy on continental chemistry was far from insignificant. Given the unsystematic character of his works, their impact in Europe is difficult to assess. Nonetheless, if we confine our investigation to his chemical ideas, the influence of Boyle (which I have already assessed for England), was by no means negligible. Reception of his ideas was diverse and not confined to the practical aspects of his chemistry. As we shall see, in the last decades of the seventeenth century, mainly in France, a number of chemists adopted corpuscular ideas, and only few of them reduced chemical properties to the mechanical principles. Moreover, as a result of Boyle’s criticism of the chemical principles, several chemists adopted the so-called principles as ‘working tools’, and did not consider them as the ultimate constituents of all bodies. This is apparent mainly in the numerous textbooks produced in the last decades of the century. The present chapter takes into account the European chemists’ theories within their national and intellectual contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. See above, chapter 2, pp. 54–5.

    Google Scholar 

  2. In a letter to Mersenne of 15 April 1630 Descartes wrote: ‘Testudie maintenant en chymie & en anatomie tout ensemble, et apprens tous les iours quelque chose que ie ne trouve pas dedans les livres.’ AT, i, p. 379. Cf. J-F. Maillard, ‘Descartes et l’alchimie: une tentation conjurée?’ in F. Greiner (ed.), Aspects de la tradition alchimique au XVII e siècle (Paris-Milan, 1998), pp. 95–109.

    Google Scholar 

  3. AT, v, p. 237 (letter to Charles Cavendish of 31 March 1649) and AT, vi, p. 9 (Discours de la Méthode).

    Google Scholar 

  4. AT, iii, pp. 130–131. On Descartes’s view of imagination, see J-R. Armogathe, ‘L’imagination de Mersenne à Pascal’, in M. Bianchi and M. Fattori (eds.), Phantasia-Imaginatio (Rome, 1988), pp. 259–72.

    Google Scholar 

  5. “Tria hic habemus, quae pro tribus vulgatis Chymicorum principiis, sale sulphure ac mercurio sumi possunt: sumendo scilicet succum acrem pro sale, mollissimos ramulos oleaginae materiae pro sulphure, ipsumque argentum vivum pro illorum mercurio.” (AT, viii, p. 241).

    Google Scholar 

  6. Phncipia, iv, p. 66, AT, viii, p. 244.

    Google Scholar 

  7. Principia, iv, p. 61, AT, viii, p. 241.

    Google Scholar 

  8. Principia, iv, p. 62, AT, viii, p. 242.

    Google Scholar 

  9. Principia, iv, pp. 69 and 110, AT, viii, pp. 245 and 264.

    Google Scholar 

  10. In his physiological work Descartes adopts the notion of fermentation, though just as an analogy: he claims that vital heat is produced by a process which is analogous to fermentation. See Traité de l’Homme, AT, xi, p. 123 and the letter to Plemp of 15 February 1638, AT, v, pp. 530–1.

    Google Scholar 

  11. A quantitative analysis of the contents of some French chemical textbooks may be found in M. Bougard, La Chimie de Nicolas Lemery (Thurnhout, 1999), pp. 418–28. On chemical textbooks, see also

    Google Scholar 

  12. B. Joly, ‘De l’alchimie à la chimie: le development des “cours de chymie” au XVIIe siècle en France’, in Greiner (ed.), Aspects (n. 2), pp. 85–94 and

    Google Scholar 

  13. L. Principe, The Aspiring Adept. Robert Boyle and his Alchemical Quest (Princeton, 1998), pp. 34–5 and 58–61.

    Google Scholar 

  14. On J. Beguin’s Tyrocinium (1610) see T.S. Patterson, ‘Jean Beguin and his Tyrocinium Chymicum’, Annals of Science 2 (1937), 243–298 and

    Article  Google Scholar 

  15. O. Hannaway and A. Kent, ‘Some new considerations on Béguin and Libavius’, Annals of Science 16 (1960), 241–50.

    Article  Google Scholar 

  16. A. Clericuzio, ‘Carneade and the Chemists’, in Robert Boyle Reconsidered, pp. 82–3. See also Principe, Aspiring Adept (n. 11), pp. 58–62.

    Google Scholar 

  17. See above, chapter two, pp. 42–7.

    Google Scholar 

  18. A. Barlet, Le Vray et methodique cours de la physique resolutive, vulgairment dite Chymie (Paris 16572), pp. 66–7.

    Google Scholar 

  19. Ibid., p. 117

    Google Scholar 

  20. Ibid., pp. 42 and 52–3.

    Google Scholar 

  21. N. Lefebvre, Traicté de la Chymie, 2 vols. (Paris, 1660), i, pp. 6–11. On Lefebvre see Partington, iii, pp. 17–24.

    Google Scholar 

  22. Lefebvre, Traicté (n. 18), p. 15.

    Google Scholar 

  23. Ibid., p. 19. Cf. N.E. Emerton, The Scientific Reinterpretation of Form (Ithaca and London, 1984), pp. 186–7.

    Google Scholar 

  24. Ibid., pp. 21–6.

    Google Scholar 

  25. On Christophle Glaser, see R.G. Neville, ‘Christophle Glaser and the Traité de la Chymie, 1663’ Chymia 10 (1965), 25–52 and Partington, iii, pp. 24–6. Moïse Charas claimed that he (not Glaser) was the author of the Traité de la Chymie, but there is no evidence to confirm Charas’s claim. See M. Bougard, La Chimie (n. 11), pp. 24–6.

    Article  Google Scholar 

  26. Glaser, Traité de la Chymie (Paris, 1668; Ist edn: 1663), p. 7.

    Google Scholar 

  27. Ibid., p. 8.

    Google Scholar 

  28. Ibid., p. 9.

    Google Scholar 

  29. Very little is known of Pierre Thibaut. Evidently he originated from Lorraine. From a laudatory sonnet published in his Cours we know that he was ‘Distillateur ordinaire du Roy’.

    Google Scholar 

  30. Sébastien Matte-La Faveur, Pratique de Chymie (Montpellier, 1671), pp. 4–5. Matte-La Faveur was * Distillateur and Demonstrateur ordinaire de la Chymie’ at the Medical faculty of Montpellier.

    Google Scholar 

  31. On Matte-La Faveur see M. Bougard, Autour de Sébastien Matte-La Faveur. Eclaircissement biographiques sur une famille de démonstrateurs de la chimie à Montpelliers (XVIF et XVIII e siècles (n. p., 1989), and id., La Chimie (n. 11), pp. 126–7.

    Google Scholar 

  32. “Dans un sens relatif un principe est dit volatil ou fixe par rapport aux autres parties du même mixte, ou l’on compare des principes de même nature, par exemple deux differents sels d’un même mixte; ou des principes de differente nature, par exemple le sel & le soufre d’un même mixte. Dans le premier sens on dit qu’un sel est fixe & que l’autre est volatil. Dans le second sens on dit que le mercure est le principe le plus volatil du mixte. Si vous comparez un principe avec celuy d’un autre mixte, vous le pourrez appeler volatil ou fixe selon la fixité, ou la fixité du principe avec qui vous le comparerez. Ains le sel essentiel des plantes, ou le nitre comparé avec le sel armoniac, ou avec le sel volatil de quelque animal, est dit fixe; quoyque le comparant avec les Alkalis il soit volatil. Avant que de passer aux differences particulieres de chaque principe, remarquez que les mineraux ont leurs principes plus fixes que le vegataux & derechef les vegetaux plus que les animaux.” Matte-La Faveur, Pratique de Chymie (n. 27), pp. 13–14.

    Google Scholar 

  33. Bougard, La Chimie (n. 11), pp. 439–55, publishes the text of Lemery’s ‘Remarques sur les Principes’ from the 1687 edition of the Cours, which is to some degree different from the first edition (1675). The 1687 text is not changed in subsequent editions of the work. For a bibliography of Lemery’s works and a comparative analysis of the different editions of the Cours, see Bougard, La Chimie (n. 11), pp. 393–435. On Lemery see also J-C. Guédon, ‘Protestantisme et Chimie: Le milieu intellectuel de Nicolas Lémery’, Isis 65 (1974), 212–228 and

    Article  Google Scholar 

  34. J.C. Powers, ‘Ars sine Arte: Nicholas Lemery and the End of Alchemy in Eighteenth-Century France’, Ambix 45 (1998), 163–89.

    Article  Google Scholar 

  35. “La pluspart des Autheurs qui ont parlé de la Chymie, en ont écrit avec tant d’obscurité, qu’ils semblent avoir fait leur possible pour n’estre pas entendus. Et l’on peut dire qu’ils ont trop bien réüssi, puisque cette Science a esté presque cachée pendant plusieurs siecles, & n’a esté connuë que de tres-peu de personnes. C’est en partie ce qui a empesché un plus grand progrés que l’on eust pû faire dans la Philosophie.” N. Lemery, Cours de Chymie (Paris, 1675) (hereafter as Cours, followed by the date of edition), ‘Preface’ sig. aiif. Descartes’s criticism of the chemists’ language appears in his letter to Newcastle of 23 November 1646: “Je souscris en tout au jugement que Vostre Excellence fait des Chimistes, & croy qu’ils ne font que dire des mots hors de l’usage commun, pour faire semblant de sçavoir ce qu’ils ignorent.” AT, iv, pp. 569–70. Boyle’s less destructive criticism is contained in the Sceptical Chymist, see above, pp. 114–5.

    Google Scholar 

  36. On the language of chemistry see M. Crosland, Historical Studies in the Language of Chemistry (New York, 19782) and

    Google Scholar 

  37. M. Beretta, The Enlightenment of Matter. The Definition of Chemistry from Agricola to Lavoisier (Canton, Mass., 1993).

    Google Scholar 

  38. “Le premier Principe qu’on peut admettre pour la composition des Mixtes est un esprit universel, qui étant répandu par tout, produit diverses choses selon les diverses Matrices ou Pores de la Terre dans lesquels il se trouve embarassé: mais comme ce Principe est un peu Metaphysique, & qu’il ne tombe point sous les sens, il est bon d’en établir de sensibles.” Lemery, Cours (1675), p. 3 (this passage is not changed in subsequent editions).

    Google Scholar 

  39. “L’Esprit qu’on appelle Mercure, est le premier des actifs, qui nous paroist lorsque nous faisons l’Anatomie d’un Mixte: c’est une substance subtile, penetrante, legere, qui est plus en agitation qu’aucun des autres Principes: c’est luy qui fait croistre les Mixtes en plus ou en moins de temps; selon qu’il s’y rencontre en petite ou en grande quantité: mais aussi pour son grand mouvement, il arrive que les corps où il abonde, sont plus subject à la corruption; c’est ce qu’on remarque aux Animaux, & aux Vegetaux. Au contraire, la plupart des Mineraux où il est en petite quantité, semblent incorruptibles.” Ibid., p. 3.

    Google Scholar 

  40. Bougard, La Chimie (n. 11), pp. 439–55 publishes the text of Lemery’s ‘Remarques sur les Principes’ as contained in the 6th edition of the Cours (1687), which is rather different from the first edition (1675). The 1687 text is not changed in subsequent editions of the work.

    Google Scholar 

  41. Clericuzio, ‘Carneades and the Chemists’, Robert Boyle Reconsidered, pp. 84–5.

    Google Scholar 

  42. “Quelques philosophes modernes veulent persuader qu’il est incertain que les substances qu’on retire des mixtes, & que nous avons appellées Principes de Chymie, resident effectivement & naturellement dans le Mixte: ils disent que le feu en rarefiant la matiere dans les distillations, est capable de luy donner ensuite un arrangement tout different de celuy qu’elle avoit auparavant, & de former le Sel, l’Huile & les autres choses qu’on en titre. Ce doute paroist d’abord assez bien fondé; parce qu’il est certain, comme nous le dirons dans la suite, que le feu donne beaucoup d’impression aux preparations, & que bien souvent il deguise tellement les substances, qu’elles ne sont presque plus reconnoissables de ce qu’elles étoint auparavant, mais, il est facile de faire voir que quoy que le feu déguise les substances, il ne forme pas neanmoins les Principes; car nous les voyons et sentons dans plusieurs Mixtes avant qu’ils ayent passé par le feu.”, Lemery, Cours (1683), pp. 6–7. “On trouve aisément les cinq Principes dans les Animaux & dans les Vegetaux, mais on ne les rencontre pas avec la mesme facilité dans les Mineraux: il y en a mesme quelques-uns, comme l’Or et l’Argent, desquels on ne peut pas en tirer deux, ny faire aucune separation, quoy que nous disent ceux qui recherchent avec tant de soin, les Sels, les Soulfres & les Mercures de ces Metaux.” Ibid., p. 9. See also ibid., p. 21, on the volatile salts of plants.

    Google Scholar 

  43. “Je veux croire que tous les Principes entrent dans la composition de ces Mixtes, Mais il n’y a pas de consequence que ces Principes soient demeurez en leur premier état, & qu’on les en puisse retirer; car il se peut faire que ces substances qu’on appelle Principes, se soient tellement embarassées les unes dans les autres, qu’on ne les puisse pas separer qu’en brisant leurs Figures. Si vous meslez par exemple un Esprit acid avec le sel de tartre ou quelqu’ autre alkali, le pointes de l’acide s’embarrassent de maniere dans les Pores du Sel; que si par la distillation vous voulez separer l’esprit acide comme il estoit auparavant, vous n’y parviendrez jamais: il aura perdu presque toute sa force, parce que ses pointes s’estant brisées dans l’effort qu’elles auront fait, n’auront peu conserver la figure aussi penetrante qu’elles avoient.” Ibid., p. 9.

    Google Scholar 

  44. Ibid., p. 6.

    Google Scholar 

  45. Ibid., pp. 25–6.

    Google Scholar 

  46. Ibid., p. 169. Equally mechanical is Lemery’s description of cinnabar (mercuric sulphide): “La cause de ce déguisement du Mercure en Cinabre vient de ce que la partie du soulfre la plus acide penetre le Mercure, & embarasse tellement ses parties, qu’elle arreste l’agitation en laquelle elles estoient.” Ibid., p. 172.

    Google Scholar 

  47. Ibid., p. 9.

    Google Scholar 

  48. Lemery, Cours (1687), p. 582. See also Bougard, La Chimie (n. 11), pp. 166–7.

    Google Scholar 

  49. Lemery, Cours (1687), p. 4.

    Google Scholar 

  50. “Il y a de trois sortes de Liqueurs, qu’on qualifie du nom d’Esprit dans la Chymie, l’Esprit des Animaux, l’Esprit ardent des Vegetaux, & l’Esprit Acide. Le premier, comme l’Esprit de Corne de Cerf, n’est qu’un Sel Volatile Resout par un peu de Phlegme. Le seconde, comme l’Esprit de Vin, l’Esprit de Genievre, l’Esprit de Romarin, est une Huile exaltée, comme nous dirons en parlant des Vins. Et le dernier, comme l’Esprit de Vinaigre, l’Esprit de Tartre, l’Esprit de Vitriol, est un Sel essentiel Acide Resout en fusion par le feu, comme nous prouverons en parlant du Vinaigre et de la distillation du Tartre. On appelle cette derniere sorte d’Esprit, Sal fluor, parce qu’en effet, ce n’est qu’un Sel fluide. Ce trois sortes de liqueurs comprenant tout ce qu’on appelle Esprit.” Ibid., pp. 9–10.

    Google Scholar 

  51. Ibid, p. 11.

    Google Scholar 

  52. François de le Boë (Sylvius), Disputationum Medicarum Decas (Amsterdam, 1663) and O. Tachenius, Hippocrates Chimicus (Venice, 1666). On Tachenius see Partington, ii, pp. 291–7. On Sylvius, see DSB and E.A. Underwood, ‘Franciscus Sylvius and his Iatrochemical School’, Endeavour 31 (1972), 73–6.

    Google Scholar 

  53. F. André, Entretiens sur l’Acide et sur l’Alkali. Où sont examinées les objections de Mr Boyle contre ces principes (Paris, 1677, first edn: 1672).

    Google Scholar 

  54. Ibid., p. 15.

    Google Scholar 

  55. Ibid., pp. 103–5, 131–5.

    Google Scholar 

  56. Little is known about Bertrand, not even his Christian name. He was a member of the Marseilles College of Physicians.

    Google Scholar 

  57. Bertrand, Reflexions Nouvelles sur l’Acide et sur l’Alkali: où apres avoir demontré que ces deux sels ne peuvent pas être les principes des Mixtes, on fait voir le veritable usage qu ‘on en peut faire dans la Physique & dans la Medecine (Lyons, 1683), pp. 2–3.

    Google Scholar 

  58. Ibid., pp. 16; 23, 25; 42; 45–6; 59–72; 76.

    Google Scholar 

  59. Ibid., p. 74.

    Google Scholar 

  60. Ibid., p. 36–8.

    Google Scholar 

  61. Ibid.

    Google Scholar 

  62. Ibid., pp. 3–4; 6.

    Google Scholar 

  63. Ibid., pp. 163–4.

    Google Scholar 

  64. Ibid., pp. 164–8.

    Google Scholar 

  65. See Duhamel, De Consensu veteris et novae philosophiae libri duo, 3rd edition, revised (Oxford, 1669, first edn: 1663), and id., Philosophia vetus et nova ad usum scholae accommodata (London, 16854), pp. 681–742. Jean Baptiste Duhamel (1623–1706) was the first Secretary of the Académie Royale des Sciences (1666–97).

    Google Scholar 

  66. On Duhamel, see D.J. Sturdy, Science and Social Status: The Members of the Académie des Sciences, 1666–1750 (Woodbridge, 1995), pp. 82–6.

    Google Scholar 

  67. “Chymicorum principia non prima, sed ad summum principia secundaria dici possunt [...] tanta in iis [chymicis] vocibus salis, sulphuris, & mercurii ambiguitas, tanta est homonymia, ut res his vocibus subjectae vix designari. Principia chymicorum non sunt actu in mixtis, ea forma, numero, statu, in quo separata conspiciuntur: sed ignis magna ex parte ea procreat.”, Duhamel, Philosophia vetus et nova (n. 58), pp. 743–4.

    Google Scholar 

  68. Samuel Cottereau Duclos (1598–1685), member of the Académie Royale des Sciences, King’s physician became in 1670 assistant to Bourdelin for the mineral waters tests in France. On his life, see D. Todériciu, ‘Sur la vraie biographie de Samuel (Duclos) Cotreau’, Revue d’Histoire des Sciences 27 (1974), 64–7. See also Sturdy, Science (n. 58), pp. 107–9 and Bougard, La Chimie (n. 11), pp. 133–6. His éloge, written by Condorcet, reads: “Notre chimiste sentit même combien l’application de la Physique corpusculaire à la Chimie était vague et fautive; & il s’éleva hautement contre la Chimie de Boyle, qui était uniquement fondée sur cette physique.” Éloges des Académiciens de l’Académie Royale des Sciences, morts depuis 1666, jusq’en 1699 (Paris, 1773), p. 68. It is noticeable that in his éloge of Duclos, Condorcet praises Stahl for making chemistry “une veritable science”. Ibid., p. 67. Condorcet’s éloge is evidently based on Fontenelle’s opposition of Duclos’s chemical research to Boyle’s mechanical views of matter. See Histoire de l’Académie Royale des Sciences (Paris, 1733), i, p. 79. Duclos left a substantial amount of manuscripts, largely contained in the Procès-verbaux of the Académie des Sciences.

    Article  Google Scholar 

  69. See J.G. Stubbs, “Chemistry at the Académie des Sciences” (Unpublished Ph.D. dissertation, University College, London, 1939);

    Google Scholar 

  70. F.L. Holmes, ‘Analysis by Fire and Solvent Extractions: The Metamorphosis of a Tradition’ Isis 62 (1971), pp. 129–148 and

    Article  Google Scholar 

  71. A. Stroup, A Company of Scientists. Botany, Patronage, and Community at the Seventeenth-Century Parisian Royal Academy of Sciences (Berkeley, 1990), pp. 89–102.

    Google Scholar 

  72. Académie Royale des Sciences, Procès-verbaux, 22 Dec. 1666, i, fols. 1–22.

    Google Scholar 

  73. Procès-verbaux, i, fols. 113–114 (16 Avril 1667).

    Google Scholar 

  74. Procès-verbaux, i, fols. 108–167, containing observations on the preparation of the Alkahest. The reference to homogeneous corpuscles occurs on fols. 140v-141r. Duclos’s positive view of the Alkahest for the analysis of plants was criticised by Denis Dodart (1634–1707), physician and member of the Académie des Sciences, see Stroup, A Company (n. 61), p. 97, and Sturdy, Science (n. 58), pp. 184–9.

    Google Scholar 

  75. Paris, Bibliothèque Nationale, MS fr. 1333, fols. 238–262.

    Google Scholar 

  76. Duclos, ‘Dissertation’, Histoire et mémoires de l’Académie royale des sciences, 11 vols. (Paris, 1729–33), iv, pp. 1–40. Duclos’s Dissertation was also published in Amsterdam in 1680.

    Google Scholar 

  77. Procès-verbaux, vi, fol. 64rv(27 April 1669).

    Google Scholar 

  78. Procès-verbaux, i, fols. 36–7, 8; 215–6, 222 (1667 and 1678–9). On Claude Perrault (1613–88), physician and Professor of Medicine at the Sorbonne, see Sturdy, Science (n. 58), pp. 86–7.

    Google Scholar 

  79. Procès-verbaux, vi, fols. 144–45 (1669). See also C. Perrault, La Pesanteur des corps, in C. Perrault and P. Perrault, Oeuvres diverses, 2 vols. (Leiden, 1721), i, pp. 3–10.

    Google Scholar 

  80. On Mariotte, see DSB; R. Taton (ed.), Mariotte Savant et Philosophe (Paris, 1986); Stroup, A Company (n. 61), passim; and Sturdy, Science (n. 58), pp. 110–2.

    Google Scholar 

  81. Mariotte, Essay de la Vegetation des Plantes (Paris, 1676), repr. in Oeuvres de Mr Mariotte de l’Académie Royale des Sciences, 2 vols. (Paris, 1717), i, pp. 121–47.

    Google Scholar 

  82. “Ma premiére hypothèse est, qu’il y a plusieurs principes grossiers & visibles des Plantes, comme l’eau, le soufre ou huile, le sel commun, la salpètre, le sel volatile ou armoniac, quelques terres, & c. Et que ces principes grossiers sont composés eux-mêmes de trois ou quatre principes plus simples, qui sont naturellement joints ensemble; par exemple, le salpétre a son flegme ou eau insipide, son esprit, son sel fixe, & c; le sel comun a son flegme, son esprit, son sel fixe, & c. Et on peut croire ave beaucoup de vrai-semblance, que ces principes plus simples sont encore composés de quelques parties différentes entre elles, tellement petites, qu’on ne peut les appercevoir par aucun artifice, ni determiner quelles sont leurs figures & leurs autres proprietez.”, ibid., p. 121.

    Google Scholar 

  83. Homberg’s chemical views are mainly contained in Histoire et mémoires de l’Académie Royale des Sciences (n. 66), 1702, 1704–6. On Wilhelm Homberg see Partington, iii, pp. 42–7, Holmes (n. 61), pp. 137–8; Bougard, La Chimie (n. 11), pp. 136–9; Sturdy, Science (n. 58), pp. 226–33.

    Google Scholar 

  84. For Boerhaave see DSB; H. Metzger, Newton, Stahl, Boerhaave et la doctrine chimique (Paris, 1930), pp. 191–305;

    Google Scholar 

  85. G. Lindeboom, Hermann Boerhaave, the Man and his Work (London, 1968).

    Google Scholar 

  86. See H. Boerhaave, Elementa Chemiae, 2 vols. (Leiden, 1732).

    Google Scholar 

  87. David van Goorle, Exercitationes Philosophicae quibus universa fere discutitur Philosophia Theoretica (Leiden, 1620), pp. 235–251. On David van Goorle see Lasswitz, Geschichte, i, pp. 332–5 and 455–63 and

    Google Scholar 

  88. T. Gregory, ‘Studi sull’Atomismo del Seicento. II David van Goorle e Daniel Sennert’, Giornale critico della filosofia italiana 45 (1966), 44–63.

    Google Scholar 

  89. Goorle, Exercitationes (n. 75), pp. 313–4; 318.

    Google Scholar 

  90. Ibid., pp. 143–4.

    Google Scholar 

  91. Ibid., p. 247.

    Google Scholar 

  92. Goorle, Idea Physicae (Utrecht, 1651), pp. 51–2.

    Google Scholar 

  93. C. de Waard (ed.), Journal tenu par Isaac Beeckman, 4 vols. (The Hague, 1939–53).

    Google Scholar 

  94. Ibid., ii, pp. 245–6.

    Google Scholar 

  95. “Videntur haec primo a materia prima primae differentiae constitui, ita ut non plures sint differentes figurae quam quatuor; ergo quatuor atomorum figurae constituunt quatuor differentias.” Ibid., i, pp-152–3. “Atomi videntur tantum esse quatuor generum, quorum unum est ex quibus constat terra [...] ita ut pura terra constet ex solis atomis ejus generis.” Ibid., iii, p. 138. As Kubbinga noted, Beeckman refrained from suggesting which were the shapes of the four kinds of atoms, see H.H. Kubbinga, ‘Les premières théories «moléculaires»: Isaac Beeckman (1620) et Sébastien Basson (1621). Le concept d’«individu substantiel» et d’«espèce substantielle»’, Revue d’Histoire des Sciences 37 (1984), 215–33, esp. p. 220.

    Article  Google Scholar 

  96. See H.H. Kubbinga, ‘The first Molecular theory (1620): Isaac Beeckman (1588–1637)’, Journal of Molecular Structure 181 (1988), 205–18.

    Article  Google Scholar 

  97. “Sufficiat dixisse elementorum minima in compositis non solum differre proportione numeri, ut 3 partes ignis, 4 aeris, 3 aquae, 5 terrae, sed etiam differre situ et positione inter se. Sic alia proportio numeri et situs est in hominis venis, alia in nervis, alia in ossibus.” Ibid., ii, p. 70.

    Google Scholar 

  98. Ibid., ii, p. 128.

    Google Scholar 

  99. Kubbinga, ‘Premierès théories’ (n. 82), p. 225.

    Google Scholar 

  100. Besides the spatial arrangement of particles, the other cause of the change in texture is the ratio between particles and vacuola: “Unde colligitur varietatem rerum oriri ex proportionibus vacui et corporis.” Beeckman, Journal (n. 80), ii, p. 238. See also ibid., iii, p. 56.

    Google Scholar 

  101. See P. Dibon, La Philosophie Néerlandaise au siècle d’or (Amsterdam, 1954), p. 206.

    Google Scholar 

  102. T. Verbeek, Descartes and the Dutch. Early Reactions to Cartesian Philosophy, 1637–1650 (Carbondale and Edwardsville, 1992), pp. 5–9. See also Dibon, La Philosophie Néerlandaise (n. 88), passim.

    Google Scholar 

  103. Verbeek, Descartes and the Dutch (n. 89), pp. 13–17.

    Google Scholar 

  104. Ibid., pp. 17–33.

    Google Scholar 

  105. See P. Farina, ‘Il corpuscolarismo di Henricus Regius: materialismo e medicina in un cartesiano olandese del seicento’, in Ricerche sulVatomismo del seicento (Florence, 1977), pp. 119–78. Regius’s Philosophia naturalis was a new edition with small changes of the Fundamenta. It was first published in 1654 and again in 1661.

    Google Scholar 

  106. See for instance the precipitation of mercury: “Mercurius, & omnia metalla in aquis fortibus soluta, in iisque, propter parvitatem dissolutarum particularum, & vehementem aquarum istarum motum, volitantia, adminiculo salis vel calcis tartari injectae, sub specie pulveris ad fundum praecipitantur; quia sal vel calx tartari habet particulas ita conformatas, ut vi ebullitionis, quam excitat, praecipuos spiritus ex aqua forti expellat; & deinde, ut metallorum particulis & aliis salibus, in aqua forti exsistentibus, facile adhaerat, & multas inter se conjungat, quo illae graviores factae, & minus fortiter motae, quam ut a liquore isto possit sustineri, necessario ad fundum subsidunt.” H. Regius, Fundamenta physices (Amsterdam, 1646), p. 128. See S. Matton, ‘Cartésianisme et Alchimie: à propos d’un témoignage ignoré sur les travaux alchimiques de Descartes. Avec une note sur Descartes et Gomez Pereira’, in Greiner (ed.), Aspects (n. 2), pp. 111–84, esp. pp. 124–5.

    Google Scholar 

  107. Verbeek, Descartes and the Dutch (n. 89), pp. 34–40.

    Google Scholar 

  108. For Heereboord see also Dibon, La Philosophie Néerlandaise (n. 88), pp. 116–9.

    Google Scholar 

  109. A. Heereboord, Meletemata Philosophica (Leiden, 1659), pp. 347–51.

    Google Scholar 

  110. C. Hoogelande, Cogitationes (Amsterdam, 1646), pp. 26–8. For Hoogelande see S. Matton, ‘Cartésianisme et Alchimie: à propos d’un témoignage ignoré sur les travaux alchimiques de Descartes. Avec une note sur Descartes et Gomez Pereira’, in Greiner (ed.), Aspects (n. 2), pp. 118–23.

    Google Scholar 

  111. Hoogelande, Cogitationes (n. 97), p. 79: “Fermentatio autem generaliter a nobis defînienda videtur, languidior ac moderatior (velocior enim, ac vehementior, effervescentia dici solet) materiae humidae vel liquidae, vel variarum materiarum commixturae, actio, tamquam tertium quid, sive tertius quidam motus: vel tepidioris externi caloris adminiculo intercedente; vel solius compositionis vel commistionis ratione, ex diversitate motus interni ac insensibili insensibilium particularum a diversitate, tum quantitatis & qualitatis earundem, tum pororum ipsarum substantiarum prodeunte, orta, qua mediante, humidiori fermentandae vel fermentatae substantiae portioni, subtilioris aëris quantitas, vel materiam quaedam aetherea involvitur.” See also ibid., p. 81.

    Google Scholar 

  112. J. Phocylides Holwarda, Philosophia Naturalis, seu Physica Vetus-Nova (Franeker, 1651), pp. 7–8. For Holwarda see Dibon, La Philosophie Néerlandaise (n. 88), pp. 155–7.

    Google Scholar 

  113. Holwarda, Philosophia (n. 99), p. 15.

    Google Scholar 

  114. Ibid., pp. 16–17.

    Google Scholar 

  115. A good account of Sylvius’s iatrochemistry is Partington, ii, pp. 281–90. See also DSB. For Sylvius’s theory of fermentation see Sylvius, Disputationum Medicarum, in Opera Medica (Amsterdam, 1679), pp. 10–13. Sylvius’s doctrine of fermentation was first presented in a disputation of 1659. See Disputatio prima De Alimentorum Fermentatione in Ventriculo (Amsterdam, 1659), repr. in Opera Medica, p. 11: “Mutationem, quam in ventriculo subeunt alimenta, quamque impraesentiarum examinare fert animus, Chylificationis nomine vulgo indigitant; nobis Fermentationis nomen magis arridet ob rationes mox secuturas. Utique duplex mistorum observatur destructio & dissolutio: Altera quidem violenta & subito cum notabili partium dissipatione contingens ab Igne, Ustio dicta; altera vero blanda & lente citra notabilem partium iacturam contingens per Aquam, Fermentatio, vel quando faetor coincidit, Putrefactio vocata.”

    Google Scholar 

  116. On Jacob Le Mort, see Partington, ii, pp. 737–8.

    Google Scholar 

  117. “Ex hisce duobus principiis, fluido nempe & firmo oriuntur sequentia principia chymicorum, quae quamvis videantur externis nostris sensibus, inter se invicem differre, attamen in haec duo, facili negotio concurrunt, & reduci possunt, nempe in spirituosam & aëream aquam & terram spongiosam.” Le Mort, Compendium Chymicum, demonstrans Experimentis & Rationibus brevem & facilem Methodum Operationes accurate & succinte adfinem producendi (Leiden, 1682), p. 5.

    Google Scholar 

  118. Ibid., pp. 6–10. In his Idea Actionis Corporum (Leiden, 1693), pp. 6–7, Le Mort defines the chemical principles as follows: “Primo puncta minima rigida, acuta, quae salia vocantur, secundo oblongae, molles, obtusae & flexiles particulae, sub nomine aquae sese offerentes. Tertio corpora dura, solida, in omnem dimensionem valde extensa, ad motum per se inertia quae terrae vocantur. Ad haec tria omnia reduci posse corpora, eorundemque actiones & figuras.”

    Google Scholar 

  119. “Quod attinet colores, odores, sapores illos a particulis salinis dependere statuimus.” Ibid., p. 10.

    Google Scholar 

  120. Ibid., pp. 37–8.

    Google Scholar 

  121. Le Mort, Chymiae Verae Nobilitas & Utilitas (Leiden, 1696), p. 3.

    Google Scholar 

  122. See W. ten Rhyne, Exercitatio Physiologica (Leiden, 1669), sig. B4r.

    Google Scholar 

  123. For ten Rhyne see A. Hirsch, Biographisches Lexikon der hervorragenden Àrzte 6 vols. (Vienna and Leipzig, 1885–7).

    Google Scholar 

  124. W. ten Rhyne, Meditationes in Magni Hippocratis textum XXIV De Veteri Medicina (Leiden, 1672), pp. 70; 72; 246–53; 303–4; 361.

    Google Scholar 

  125. J.C. Barckhausen, Pyrosophia (Leiden, 1698), pp. 7; 13–15; 33. On Barckhausen (or Barchusen), see Partington, ii, pp. 700–2 and

    Google Scholar 

  126. F. Abbri, Le Terre, l’Acqua, le Arie. La Rivoluzione chimica del Settecento (Bologna, 1984), p. 22.

    Google Scholar 

  127. N. Hartsoeker, Principes de Physique (Paris, 1696), pp. 1–2. On Hartsoeker, see DSB and Partington, ii, pp. 451–4.

    Google Scholar 

  128. Hartsoeker, Principes de Physique (n. 112), pp. 88–95; 99–102.

    Google Scholar 

  129. Hartsoeker, Conjectures Physiques (Amsterdam, 1706), pp. 101–130.

    Google Scholar 

  130. See B.T. Moran, Chemical Pharmacy Enters the Universities: Johannes Hartmann and the Didactic Care of “Chymiatria” in the Early Seventeenth Century (Madison, Wisc., 1991);

    Google Scholar 

  131. See B.T. Moran, id., The Alchemical World of the German Court. Occult Philosophy and Chemical Medicine in the Circle of Moritz of Hessen (Stuttgart, 1991), pp. 50–67;

    Google Scholar 

  132. H. Trevor-Roper, ‘The Court Physician and Paracelsianism’, in V. Nutton (ed.), Medicine at the Courts of Europe. 1500–1837 (London and New York, 1990), pp. 79–94.

    Google Scholar 

  133. Useful information on German chemistry in the late seventeenth century may be found in K. Hufbauer, The Formation of the German Chemical Community (1720–1795) (Berkeley, 1982).

    Google Scholar 

  134. On Glauber see DSB; Partington, ii, pp. 341–61; Debus, The Chemical Philosophy, 2 vols. (New York, 1977), pp. 425–41.

    Google Scholar 

  135. See R. Glauber, Tractatus de natura solium (Amsterdam, 1659).

    Google Scholar 

  136. H.H. Kangro, Joachim Jungius’Experimente und Gedanken zur Begründung der Chemie als Wissenschaft (Wiesbaden, 1968) and

    Google Scholar 

  137. C. Meinel, ‘Der Begriff des chemischen Elementes bei Joachim Jungius’, Sudhoffs Archiv 66/4 (1982), 313–38.

    Google Scholar 

  138. A.G. Billich, Thessalus in Chymicis Redivivus, id est, de vanitate medicinae chymicae seu spagyricae, dissertatio. Eiusdem anatomia fermentationis (Frankfurt, 1640). Ferguson refers to a 1639 edition which I have not been able to find;

    Google Scholar 

  139. H. Coming, De Hermetica Mgyptiorum Vetere et Paracelsicorum Nova Medicina (Helmstaedt, 1648) and

    Google Scholar 

  140. W. Rolfinck, Chimia in artis forma redacta (Jena, 1661).

    Google Scholar 

  141. F. Trevisani, Descartes in Germania. La ricezione del cartesianesimo nella Facoltàfilosofica e medica di Duisburg (1652–1703) (Milan, 1992), pp. 15–17.

    Google Scholar 

  142. On seventeenth-century German philosophy see especially M. Wundt, Die deutsche Schulmetaphysik des 17. Jahrhunderts (Tübingen, 1939);

    Google Scholar 

  143. L.W. Becke, Early German Philosophy (Bristol, 19962), pp. 160–95,

    Google Scholar 

  144. and S. Wollgast, Philosophie in Deutschland zwischen Reformation und Aufklärung (Berlin, 1988). It is apparent that Boyle’s philosophical views attracted the interest of German philosophers, as attested by the debate on the notion of nature, which originated from Boyle’s Free Enquiry into the Vulgarly Received Notion of nature (1686) and involved

    Google Scholar 

  145. G.C. Schelhammer, J.C. Sturmius and Leibniz. See G.C. Schelhammer, Natura sibi et Medicis Vindicata, sive de Natura…. (Kiel, 1697);

    Google Scholar 

  146. J.C. Sturmius (praeses), Exercitatio Philosophica de Natura Sibi Incassum Vindicata (Nordlingen, 1698) and

    Google Scholar 

  147. G.W. Leibniz, De Ipsa Natura (1698).

    Google Scholar 

  148. The publication of Miscellanea Curiosa, sive Ephemeridum Medico-Physicarum Germanicarum Academiae Naturae Curiosorum started in 1670. On the Academia Naturae Curiosorum see J.W. Evans, ‘Learned Societies in Germany in the Seventeenth Century’, European Studies Review 7 (1977), 129–151. Chemistry and medicine played a prominent part in Miscellanea Curiosa: see the contributions, among others, of Philip J. Sachs, J. Langelot, Heinrich Screta and G. Wolfgang Wedel.

    Google Scholar 

  149. See C.W.T. Blackwell, ‘Sturm, Morhof and Brucker vs. Aristotle: three eclectic natural philosophers view the Aristotelian method’, in D.A. Di Liscia, E. Kessler and C. Methuen (eds.), Method and Order in Renaissance Philosophy of Nature (Aldershot, 1997), pp. 381–407, esp. pp. 388–9.

    Google Scholar 

  150. The best account of Becher’s chemistry is still Partington, ii, pp. 637–652, though he paid little attention to Becher’s sources. See also J. Berger, Ideen über die Verwandlung der Stoffe. Chemische Materietheorien und Affinität im 17. und 18. Jahrhundert (Berlin, 1998), pp. 25–33. For biographical sketch, see DSB and

    Google Scholar 

  151. M. Teich, ‘Interdisciplinarity in J.J. Becher’s thought’, Journal of European Ideas 9, (1988), 145–160. On Becher’s views of politics and economics,

    Article  Google Scholar 

  152. see G. Frühsorge and G.F. Strasser (eds.), Johann Joachim Becher (Wiesbaden, 1993), and

    Google Scholar 

  153. P.H. Smith, The Business of Alchemy. Science and Culture in the Holy Roman Empire (Princeton, 1994). For Becher’s alchemy see Principe, Aspiring Adept (n. 11), pp. 112–3; 173–4.

    Google Scholar 

  154. J.J. Becher, Oedipus Chimicus (Frankfurt, 1664), p. 18.

    Google Scholar 

  155. J.J. Becher, Actorum Laboratorii Chymici Monacensis, seu Physicae subterraneae libri duo (Frankfort, 1669), pp. 42–8.

    Google Scholar 

  156. “Neminem autem spero, ita absurdum fore, ut praefata tria principia aliter quam propinqua & principiata intelligat, nempe pro materia jam proxime ad actum disposita, & licet hoc modo considerentur, tarnen quomodocunque explicentur, improprie sal, sulphur & Mercurius dicuntur, si enim sulphur commune, seu qualecumque intelligas, illud mixtum erit, & hoc de Mercurio & sali communi intelligendum, quae omnia mixta sunt, & ex partibus constant, quae definiuntur, quod debeant esse simplicia, haec vero Paracelsi Principia, non modo mixta, sed & decomposita sunt.” Actorum (n. 126), p. 124. Boyle’s anti-Paracelsian arguments are referred to in Actorum, pp. 457–8.

    Google Scholar 

  157. “Nonnulli credunt, omnia constare ex sale, sulphure et Mercurio; sed ego probabo, omnia, seu potissima mixta, constare ex triplici terra, una vitrescibili, quae salis vicem praebat, matricem et basin, altera pingui, quae sulphur est, compagem, tincturam et tenacitatem dat, tertia subtilis est, et materiam supplet, Mercurius vocatur seu potius Arsenicum. Prima terra dat corpus ac substantiam et hypostasin mixtis, et est duplicis generis; vel calcinabilis, vel vitrescibilis; unde in animalibus ossa, in vegetabilibus cineris elixati, in mineralibus lapides. Secunda terra dat mixtis consistentiam, colorem, saporem etc. et est duplicis generis; consistens vel liquida; unde in animalibus sevum, adeps, axungia; in vegetabilibus oleum, gummi; in mineralibus et metallis sulphur, bitumen. Tertia terra dat mixtis formam, penetrantiam, odorem, pondus, splendorem, lucem, etc. Est quoque duplicis generis, vel pura et tum est terra, vel mixta et tum est salina, in animalibus earn cernimus in eorum salibus volatilibus; in vegetabilibus in illorum aquis destillatis, spiritibus et aquis ardentibus in fuligine; in mineralibus conspicimus earn vel fluidam, ut in argento vivo, vel consistentem, ut in arsenico.” Becher, Alphabetum Minerale, in Tripus Hermeticus Fatidicus (Frankfurt, 1689), pp. 105–7.

    Google Scholar 

  158. Becher, Actorum (n. 126), p. 525.

    Google Scholar 

  159. Ibid., p. 194.

    Google Scholar 

  160. Ibid., pp. 96–7.

    Google Scholar 

  161. Ibid., pp. 348 and 353.

    Google Scholar 

  162. “Noster vero liquor non alia ratione solvat, quam penetrando, & corpora in tenuissimas Atomos redigendo.” Ibid., p. 176.

    Google Scholar 

  163. Ibid, pp. 12–14.

    Google Scholar 

  164. “Aurum communem Mercurium appetit, argentum nitrum amat, quod in nitro sulphur seu terra secunda sit qua argentum ad perfectionem auri indiget, hinc fit, ut singulis solutionibus argenti in spiritu nitri, semper nonnihil auri inveniatur, quare argentum eadem ratione nitrum appetit.” Ibid, pp. 400–1.

    Google Scholar 

  165. J. Dolaeus, Encyclopaedia Medicinae Theoretico-Practicae...(Frankfurt, 1684). On Dolaeus (1638–1707), physician to the Landgrave of Hassen-Cassel, and a member of the Academia Naturae Curiosorum, see Hirsch (n. 109).

    Google Scholar 

  166. M. Ettmüller, Medicina Hyppocratis Chymica (Leiden, 1671), pp. 14–8 and 43–4. (first edn Leipzig, 1670). Ettmüller (1644–1683) was Professor of Botany and Medicine at Leipzig, where he also lectured on chemistry, and a member of the Academia Naturae Curiosorum. See Partington, ii, pp. 298–300.

    Google Scholar 

  167. Ettmüller, Chimia Rationalis ac Experimentalis Curiosa (Leiden, 1684).

    Google Scholar 

  168. Ibid., p. 7.

    Google Scholar 

  169. Ibid., p. 6.

    Google Scholar 

  170. Ibid., pp. 43–5.

    Google Scholar 

  171. Ibid., pp. 46 and 49: “praecipitatio est separatio corporis soluti. Ratio quapropter denuo separate seu praecipitatur corpus a solvente est duplex: primo praecipitatio sit propter porulorum seu spaciolorum in menstruo solventem angustiam, ut particulae non amplius possint contineri in iisdem, secundo, paecipitatio fit propter gravitatem particularum solutarum, ut non amplius in liquore pendere aut revolutare queant.”

    Google Scholar 

  172. D. von der Becke, Epistola ad Praecellentissimum Virum Joelem Langellottum qua Salis Tartaris (Hamburg, 1672), p. 12. On David von der Becke (1648–84), physician from Minden, see Hirsch (n. 109). An extract of von der Becke’s letter to Langellott was published in the Philosophical Transactions, 1673, pp. 5185–93.

    Google Scholar 

  173. Von der Becke, Epistola (n. 143), pp. 13–14.

    Google Scholar 

  174. Von der Becke, Experimenta et Meditationes circa Naturalium Rerum Principia (Hamburg, 1683, first edn 1674). This work was reviewed in Philosophical Transactions, 161 A, pp. 60–4.

    Google Scholar 

  175. Von der Becke, Experimenta et Meditationes (n. 145), pp. 21; 25.

    Google Scholar 

  176. “Terra est matrix seminum, in qua semina explicentur & nutriantur. Quod quidem cunctorum seminorum nutrimentum est Aqua, ab acido seminum fermento modo in plantam, modo in metallum, silicem, pro seminis directione coagulanda. Quid igitur de quinto & ultimo principio Aqua elementali statuendum erit? atque huic ultro soli, titulum veri principu materialis omnium corporum largimur, atque hoc tanto majori jure ipsi competere arbitramur, quanto certius constat solam aquam elementalem in aliud prius reduci non posse.” Ibid, p. 28.

    Google Scholar 

  177. On Jungken, see Partington, ii, pp. 303–4.

    Google Scholar 

  178. Jungken, Chymia Experimentalis Curiosa. Ex principiis mathematicis demonstrata (Frankfurt, 1681), pp. 15–18.

    Google Scholar 

  179. Jungken, Chymia experimentalis, sive Medicus praesenti seculo... (Frankfurt, 1682), p. 3.

    Google Scholar 

  180. Ibid., pp. 7–15.

    Google Scholar 

  181. On Johannes Kunckel (1630–1703), who is known mostly for his works on glass and phosphorus, see Partington, ii, pp. 361–77. Kunckel dealt with the principles of bodies in his Chymische Anmerckungen (Wittenberg, 1677), translated into Latin as Philosophia Chemica (Amsterdam, 1694). See the English translation, An Experimental Confirmation of Chymical Philosophy (London, 1705), p. 14.

    Google Scholar 

  182. Kunckel, An Experimental Confirmation (n. 152), p. 162; 122.

    Google Scholar 

  183. J. Barner, Chymia Philosophica Perfecte Delineata Docte Enucleata & Feliciter Demonstrata (Nuremberg, 1689), pp. 16–8; 29. Willis’s theory is explicitly rejected by Bamer (p. 16). On Barner (1641–86), Professor at Leipzig, see Partington, ii, pp. 377–8.

    Google Scholar 

  184. On George Wolfgang Wedel (1645–1721), physician and antiquarian, see DSB; Partington, ii, 315–7; andHufbauer (n. 115), pp. 165–6.

    Google Scholar 

  185. Wedel, Specimen experimenti chimici novi (Jena, 1682), pp. 8–12 and 58–9.

    Google Scholar 

  186. Ibid., pp. 60–5.

    Google Scholar 

  187. Bohn, Meditationes Physico-chymicae De Aeris in Sublunaria Influxu, Scilicet neque secundum Peripatheticos, nec Chymicos (Leipzig, 1678, 1st edn: 1675), p. 104. On Johann Bohn (1640–1718), Professor of Anatomy in Leipzig, see Partington, ii, pp. 300–2 and Hufbauer (n. 115), p. 165.

    Google Scholar 

  188. Ibid., pp. 56–79; 104.

    Google Scholar 

  189. Bohn, Epistola ad Virum Nobilissimum atque Amplissimum D. Joelem Langellottum, Serenissimi Ducis Holstatiae Archiatrum, De Alcali et Acidi insufficientia pro Principiorum seu Elementorum Corporum naturalium (Leipzig, 1675).

    Google Scholar 

  190. Bohn (praeses), Dissertationes Chymico-Physicae (Leipzig, 1685): Dissertatio prima ‘De corporum dissolutione’, sig. A1V–B2V.

    Google Scholar 

  191. Ibid., sig. d4rv.

    Google Scholar 

  192. J. Stisser, Acta Laboratorii Chemici Specimen Primum (Helmstaedt, 1690), sig. alv-c3r. On Johann Andreas Stisser (1657–1700), MD Leiden and Professor of Medicine and Chemistry at Helmstaedt, see Hirsch, (n. 109)

    Google Scholar 

  193. On Friedrich Hoffmann (1660–1742) see Partington, ii, pp. 691–700; and Hufbauer (n. 115), pp. 168–9. Hoffmann’s views of mercury are in his Exercitatio Medico-Chymica de Cinnabri Antimonii (Frankfurt am Main, 1689).

    Google Scholar 

  194. Hoffmann, Exercitatio acroamatica de acidi et viscidi.. (Frankfurt am Main, 1689), pp. 1–33.

    Google Scholar 

  195. Ibid., pp. 1, 30–33. “Variolas et morbillos inter morbos salinos acres commode referre posse”, p. 30.

    Google Scholar 

  196. Joel Langelot and Emanuel König, Chymia Physica circa corporum Naturalem & Artificialem Statum, in Keras Amaltheias, seu Thesaurus Remediorum e triplici Regno, ed. Emanuele König (Basle, 1693), p. 239. Sulphur is made of large and branched particles, ibid., p. 241.

    Google Scholar 

  197. Ibid., p. 263.

    Google Scholar 

  198. König, Regnum Vegetabile Physice, Medice, Anatomice, Chymice Theoretice, Practice enucleatum... (Basle, 1688), p. 12. Evidently, König’s objection to Boyle is based on a passage of the Sceptical Chymist. As we have seen in chapter four, Boyle did not accept van Helmont’s idea that water is a simple substance — though he was positive about water-colture.

    Google Scholar 

  199. On Bruno’s atomism, see P-H. Michel, ‘L’atomisme de Giordano Bruno’, in La science au seizième siècle (Paris, 1957), pp. 251–63; and

    Google Scholar 

  200. H. Gatti, ‘Notes on Bruno’s atomis’, in C. Lüthy, J. Murdoch and W.R. Newman (eds.), Late Medieval and Early Modern Corpuscular Matter Theory, (1970), forthcoming. For Galilei, see

    Google Scholar 

  201. W.R. Shea, ‘Galileo’s Atomic Hypothesis’, Ambix 17 (1970), 13–27;

    Article  Google Scholar 

  202. U. Baldini, ‘Ta struttura della materia nel pensiero di Galilei’, De Homine 57 (1976), 91–164;

    Google Scholar 

  203. P. Redondi, Galileo: Heretic (Princeton, 1987). On the Galilean school, see

    Google Scholar 

  204. M. Bucciantini and M. Torrini (eds.), Geometria e Atomismo nella Scuola Galileiana (Florence, 1992);

    Google Scholar 

  205. U. Baldini, ‘Il Corpuscolarismo italiano del seicento. Problemi di metodo e prospettive di ricerca’, in Ricerche sull’atomismo del seicento, (Florence, 1977), pp. 1–76. For a survey of Italian atomism see

    Google Scholar 

  206. E. Garin, Dal Rinascimento airilluminismo. Studi e Ricerche (Pisa, 1970), pp. 79–117.

    Google Scholar 

  207. On Fracastoro, see above, p. 10. For Capece, see DBI.

    Google Scholar 

  208. See P. Sarpi, Pensieri Naturali, Metafisici e Matematici (Milano-Napoli, 1996). A reference to Sarpi’s atomism is in Campanella’s letter to Peiresc of 19 June 1636, published in

    Google Scholar 

  209. G. Ernst and E. Canone, ‘Una lettera ritrovata: Campanella a Peiresc’, Rivista di storia della filosofia, 49/2 (1994), 353–66.

    Google Scholar 

  210. F. Liceti, De Spontaneo Viventium Ortu (Vicenza, 1618). On Liceti, see

    Google Scholar 

  211. J. Roger, Les sciences de la vie dans la pensée française au XVIII e siècle (Paris, 19932), pp. 125–7.

    Google Scholar 

  212. Though Galileo’s theory of matter was mechanical, he adopted the notion of igneous particles (ignicoli). See Il Saggiatore (1623), repr. in Le Opere di Galileo Galilei, ed. A. Favaro, 20 vols. (Florence, 1890–1909), vi, pp. 351–2. On Galileo’s ignicoli see E.J. Dijksterhuis, The Mechanization of the World Picture (Oxford, 1961), p. 424.

    Google Scholar 

  213. C. Berigard, Circuli Pisani (Padua, 1661, 1st edn: Udine 1643): ‘De Atomis Democriti’, p. 61. Berigardus was Professor at the Universities of Pisa and Padua, see DBI, Lasswitz, Geschichte, i, pp. 487–98;

    Google Scholar 

  214. N. Badaloni, ‘Intorno alla filosofia di Alessandro Marchetti’, Belfagor 23/5 (1968), 283–316;

    Google Scholar 

  215. M. Bellucci, ‘La filosofia naturale di Claude Bérigard’, Rivista critica di storia della filosofia 27 (1971), 363–411.

    Google Scholar 

  216. Berigardus, Circuli Pisani, (n. 175), p. 131. On Berigard’s notion of semina see Gemelli, Aspetti dell’atomismo classico nella filosofia di Francis Bacon e nel Seicento (Florence, 1996), p. 330.

    Google Scholar 

  217. Berigardus, Circuli Pisani (n. 175), p. 4.

    Google Scholar 

  218. Johann Chrysostomus Magnenus, Democritus Reviviscens, sive de Atomis (The Hague, 1658; first edn: Pavia, 1646) p. 91: “In quovis elemento tria sunt primario consideranda: primo, moles substantialis corporea; secundo, qualitas prima; tertio, appetentia mixtionis.” On Magnenus, see Lasswitz, Geschichte, i, pp. 498–512 and Gemelli, Aspetti (n. 176), pp. 326–9.

    Google Scholar 

  219. “Atomus ignea est entitas corporea, substantialis simplex, & pure homogenea, indivisibilis ex natura sua, calida, & lucida secundum quid, ordinata a natura ad mixtum cum aliis elementorum atomis faciendum: dixi lucida, secundum quid, nam atomi ignae non lucent, nisi certis conditionibus [...] Atomus aquea [...] humida & diaphana. Atomus terrea, frigida & adiaphana.” Magnenus, Democritus (n. 178), pp. 190–1.

    Google Scholar 

  220. See Gemelli, Aspetti (n. 176), pp. 327–9.

    Google Scholar 

  221. Cf. G. Carbonelli, Sullefonti storiche delia chimica e dell’alchimia in Italia (Rome, 1925) and

    Google Scholar 

  222. A. Perifano, L’Alchimie à la Cour de Corne 1er de Médicis: savoirs, culture et politique (Paris, 1997).

    Google Scholar 

  223. See Leonardo Fioravanti, Compendio dei secreti rationali (Venice, 1564). On Fioravanti see

    Google Scholar 

  224. W. Eamon, Science and the Secrets of Nature (Princeton, 1994), pp. 182–192 and passim;

    Google Scholar 

  225. Z.T. Bovio, Melampigo, ovvero confusione de’ medici sofisti (Verona, 1585). On Bovio see DBI. In his Magia Naturalis (1558, 2nd revised edn 1589) Delia Porta adopted a number of Paracelsian remedies, besides the pseudo-Paracelsian recipe for the unguentum armarium. For Delia Porta, see DBI; Partington, ii, pp. 15–25; and W. Eamon, Science and the Secrets of Nature, pp. 210–7.

    Google Scholar 

  226. See A. Clericuzio and S. De Renzi, ‘Medicine, Alchemy and Natural Philosophy in the Early Accademia dei Lincei’, in D.S. Chambers and F. Quiviger, Italian Academies in the Sixteenth Century (London, 1995), pp. 175–194 and

    Google Scholar 

  227. P. Galluzzi, ‘Motivi Paracelsiani nella Toscana di Cosimo II e Don Antonio dei Medici: Alchimia, Medicina, Chimica e Riforma del Sapere’, in Scienze, Credenze Occulte, Livelli di Cultura (Florence, 1982), pp. 31–62.

    Google Scholar 

  228. See M. Mönnich, Tommaso Campanella. Sein Beitrag zur Medizin und Pharmazie der Renaissance (Stuttgart, 1990), pp. 86–89

    Google Scholar 

  229. M-P. Lerner, ‘Campanella et Paracelse’, in J-C. Margolin and S. Matton, Alchimie et Philosophie à la Renaissance (Paris, 1993), pp. 379–393. Campanella also rejected atomism as, in his view, it was based on matter only, see Campanella to Peiresc, 22 August 1635, published in T. Campanella, Lettere, ed. V. Spampanato (Bari, 1927), p. 322. See also G. Ernst and E. Canone (n. 172).

    Google Scholar 

  230. Severino rejected Epicurus’s philosophy as impious. See M.A. Severino, Zootomia Democritea, (Nuremberg, 1645), pp. 4–5 and 42. He assumed that all natural bodies are animated (id., p. 34). See also Antiperipatias. Hoc est adversus Aristoteleos de respiratione piscium diatriba (Naples, 1659). On Marco Aurelio Severino see DSB;

    Google Scholar 

  231. C. Schmitt and C. Webster, ‘Marco Aurelio Severino and his relationship to Harvey: some preliminary considerations’ in A.G. Debus (ed.) Science, Medicine and Society in the Renaissance. Essays to honour Walter Pagel, 2 vols. (London, 1972), pp. 63–72 and id.,

    Google Scholar 

  232. C. Schmitt and C. Webster, ‘Harvey and M. Aurelio Severino: A Neglected Medical Relationship’, Bulletin of the History of Medicine 45 (1971), 49–75. Severinus saw Democritus more as a champion of anatomy, than an atomist.

    Google Scholar 

  233. See G.A. Borelli, Delle Cagioni delle Febbri Maligne della Sicilia negli Anni 1647 e 1648 (Cosenza, 1649), pp. 108–28. For the reference to chemical remedies, see pp. 140–1. Borelli explains digestion as the outcome of a chemical process produced by a solvent. On Borelli, see DSB; DBI and

    Google Scholar 

  234. D. Bertoloni-Meli, ‘The Neoterics and Political Power in Spanish Italy: Giovanni Alfonso Borelli and his Circle’, History of Science 34 (1996), 57–89.

    Google Scholar 

  235. Cf. P. Galluzzi, ‘G.A. Borelli dal Cimento agli Investiganti’, in F. Lomonaco and M. Torrini (eds.), Galileo e Napoli (Naples, 1987), pp. 339–55.

    Google Scholar 

  236. G.A. Borelli, De Vi Percussionis (Bologna, 1667), pp. 189 and 236–7, where he speaks of “ignis particulae minimae”. He also refers to “corpuscula magnetica” and to “corpuscula spirituosa”, ibid., p. 242. Borelli’s attack on van Helmont occurs in De Motu Animalium (Rome, 1680), p. 179. The best study of Borelli’s theory of matter is still Lasswitz, Geschichte, ii, pp. 300–28.

    Google Scholar 

  237. G.A. Borelli, De motionibus naturalibus a gravitate pendentibus (Bologna, 1670).

    Google Scholar 

  238. Borelli, De Motu Animalium (n. 188), pp. 261–4.

    Google Scholar 

  239. D. Rossetti, Composizione epassione de’ vetri (Livorno, 1671), pp. 1–14. On Donato Rossetti (1633–1688), see

    Google Scholar 

  240. S. Gomez Lopez, Le passioni degli atomi. Montanari e Rossetti. Unapolemica tra galileiani (Florence, 1997), dealing with the discussions between Geminiano Montanari, a strict mechanist, and Rossetti. See

    Google Scholar 

  241. Montanari, ‘Delia Natura, et Uso degli Atomi’, in S. Rotta, ‘Scienza e pubblica félicita in Geminiano Montanari’, Miscellanea Seicento 2/2 (1971), 187–195.

    Google Scholar 

  242. Rossetti, Composizione epassione (n. 191), p. 16.

    Google Scholar 

  243. Rossetti, Antignome fisico-matematiche (Livorno, 1667). See Gomez Lopez, Lepassioni (n. 191), pp. 97–101.

    Google Scholar 

  244. See M.H. Fish, ‘The Academy of Investigators’, in E.A. Underwood (ed.), Science, Medicine and History, 2 vols. (Oxford, 1953), i, pp. 521–63.

    Google Scholar 

  245. On Tommaso Cornelio (1614–86) see DBI and M. Torrini, Tommaso Cornelio e la ricostruzione della scienza (Naples, 1977).

    Google Scholar 

  246. T. Cornelio, Progymnasmata Physica (Venice, 1663): ‘De ratione philosophandi’, pp. 25–27 and ‘De vita’, pp. 101–2 and ‘De nutricatione’, pp. 79–84.

    Google Scholar 

  247. On Tachenius see Partington, ii, pp. 291–7; on Conti see Ferguson, ii, pp. 173; on Sebastiano Bartoli (1630–1676) see Fisch, ‘The Academy’ (n. 194), pp. 524–5.

    Google Scholar 

  248. L. di Capua, Lezioni intorno alla natura delle mofete (Naples, 1683), pp. 77–80. On di Capua (1617–95), see DBI.

    Google Scholar 

  249. Di Capua, Lezioni (n. 198), p. 139

    Google Scholar 

  250. Ibid., pp. 150–5.

    Google Scholar 

  251. Di Capua, Parere divisato in otto ragionamenti (Naples, 1681).

    Google Scholar 

  252. L. Porzio, Erasistratus, sive de sanguinis missione (Rome, 1682). The characters of Porzio’s dialogue are Erasistratus, Galen, van Helmont and Willis. Lucantonio Porzio, who was Professor of Medicine in Rome, was also connected with the Accademia di Medinacoeli in Naples and with the Academy of Paolo Sarotti in Venice. On Lucantonio Porzio, see

    Google Scholar 

  253. M. Torrini, Dopo Galileo. Una polemica scientifica (1684–1711) (Florence, 1979);

    Google Scholar 

  254. A. Dini, Filosofia della Natura, Medicina, Religione. Lucantonio Porzio (1639–1724) (Milan, 1985). In Venice Porzio performed Boyle’s experiments on air and respiration, see

    Google Scholar 

  255. C. Pighetti, L’influsso scientifico di Robert Boyle nel tardo ‘600 italiano (Milan, 1988), pp. 147–54. Pighetti’s book does not deal with the influence of Boyle’s chemistry.

    Google Scholar 

  256. See P. Rossi, ‘I punti di Zenone: una preistoria vichiana’, Nuncius 13/2 (1998), 377–425. See also Redondi, (n. 170). Atomism was advocated by Francesco d’Andrea, see

    Google Scholar 

  257. M. Torrini, ‘Atomi in Arcadia’, Nouvelles de la République des Lettres, 1984, 81–95;

    Google Scholar 

  258. A. Borrelli, D’Andrea atomista. L’ “Apologia” e altri inediti nella polemica filosofica della Napoli difine Seicento (Naples, 1995).

    Google Scholar 

  259. Cf. Dini, Filosofia (n. 202), pp. 100–110.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Clericuzio, A. (2000). Corpuscular Chemistry in the Last Decades of the Seventeenth Century. In: Elements, Principles and Corpuscles. Archives Internationales D’Histoire des Idées / International Archives of the History of Ideas, vol 171. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9464-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9464-6_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5640-5

  • Online ISBN: 978-94-015-9464-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics