Skip to main content

Characterization of Native Actin-Binding Proteins from Pollen

Myosin and the actin-bundling proteins, 135-ABP and 115-ABP

  • Chapter
Actin: A Dynamic Framework for Multiple Plant Cell Functions

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 89))

Abstract

A myosin (170 kDa) and two types of actin-bundling proteins (135-ABP and 115-ABP) were isolated from pollen tubes of lily, Lilium longiflorum. The myosin consists of a 170-kDa heavy chain with calmodulin light chain. On the basis of immunolocalization studies using antiserum against the 170-kDa heavy chain and the analysis of the sliding velocity of F-actin in vitro, this myosin was suggested to be a motor responsible for cytoplasmic streaming. The motile activity of 170-kDa myosin was suppressed by Ca2+ through the calmodulin light chain. On the other hand, both ABPs arranged actin filaments into bundles that serve as tracks for cytoplasmic streaming. The bundling activity of 135-ABP was inhibited by Ca2+-calmodulin. Physiological studies revealed that Ca2+ induces not only the inactivation of motor activity for cytoplasmic streaming but also causes the fragmentation and disorganization of actin bundles in pollen tubes, which should be correlated with the regulation of cytoplasmic streaming by Ca2+. Hence, the Ca2+ sensitivity in the activities of 170-kDa myosin and 135-ABP, acting through calmodulin, is suggested to be a molecular basis for the Ca2+ regulation of cytoplamsic streaming in pollen tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boustead CM, Smallwood M, Small H, Bowles DJ and Walker JH (1989) Identification of calcium-dependent phospholipid-binding proteins in higher plant cells. FEB S Lett 244: 456–460

    Article  CAS  Google Scholar 

  • Calvert CM, Gant SJ and Bowles DJ (1996) Tomato annexins p34 and p35 bind to F-actin and display nucleotide phosphodiesterase activity inhibited by phospholipid binding. Plant Cell 8: 333–342

    PubMed  CAS  Google Scholar 

  • Cheney RE, O’Shea MK, Heuser JE, Coelho MV, Wolenski JS, Espreafico EM, Forscher P, Larson RE and Mooseker MS (1993) Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell 75: 13–23

    PubMed  CAS  Google Scholar 

  • Clore AM, Dannenhoffer JM and Larkins BA (1996) EF-1α associated with a cytoskeletal network surrounding protein bodies in maize endosperm cells. Plant Cell 8: 2003–2014

    PubMed  CAS  Google Scholar 

  • Collings DA, Wasteneys GO, Miyazaki M and Williamson RE (1994) Elongation factor 1α is a component of the subcortical actin bundles of characean algae. Cell Biol Int 18: 1019–1024

    Article  PubMed  CAS  Google Scholar 

  • Collins K, Sellers JR and Matsudaira P (1990) Calmodulin dissociation regulates brush border myosin I (HO-kD-calmodulin) mechanochemical activity in vitro. J Cell Biol 110:1137–1147

    Article  PubMed  CAS  Google Scholar 

  • Cruz-Ortega R, Cushman JC and Ownby JD (1997) cDNA clones encoding 1,3-ß-glucanase and a fimbrin-like cytoskeletal protein are induced by Al toxicity in wheat roots. Plant Physiol 114: 1453–1460

    Article  PubMed  CAS  Google Scholar 

  • Faraday CD and Spanswick RM (1993) Evidence for a membrane skeleton in higher plants. A spectrin-like polypeptide co-isolates with rice root plasma membranes. FEBS Lett 318: 313–316

    Article  PubMed  CAS  Google Scholar 

  • Fisher DD, Gilroy S and Cyr RJ (1996) Evidence for opposing effects of calmodulin on cortical microtubules. Plant Physiol 112: 1079–1087

    PubMed  CAS  Google Scholar 

  • Friederich E, Pringault E, Arpin M and Louvard D (1990) From the structure to the function of villin, an actin-binding protein of the brush border. BioEssays 12: 403–408

    Article  PubMed  CAS  Google Scholar 

  • Furukawa R and Fechheimer M (1997) The structure, function, and assembly of actin filament bundles. Int Rev Cytol 175: 29–90

    Article  PubMed  CAS  Google Scholar 

  • Harmon AC, Putnam-Evans C and Cormier MJ (1987) A calcium-dependent but calmodulin-independent protein kinase from soybean. Plant Physiol 83: 830–837

    Article  PubMed  CAS  Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y, Cresti M, Tiezzi A and Ciampolini F (1986) Actin during pollen germination. J Cell Sci 86: 1–8

    CAS  Google Scholar 

  • Higashi-Fujime S, Ishikawa R, Iwasawa H, Kagami O, Kurimoto E, Kohama K and Hozumi T (1995) The fastest actin-based motor protein from the green algae, Chara, and its distinct mode of interaction with actin. FEBS Lett 375: 151–154

    Article  PubMed  CAS  Google Scholar 

  • Igarashi H, Vidali L, Yokota E, Sonobe S, Hepler PK and Shimmen T (1999) Actin filaments purified from tobacco cultured BY-2 cells can be translocated by plant myosin. Plant Cell Physiol 40: 1167–1171

    Article  Google Scholar 

  • Kaminskyj SGW and Heath IB (1995) Integrin and spectrin homologues, and cytoplasm-wall adhesion in tip growth. J Cell Sci 108: 849–856

    PubMed  CAS  Google Scholar 

  • Kinkema M and Schiefelbein J (1994) A myosin from a higher plant has structural similarities to class V myosins. J Mol Biol 239: 591–597

    Article  PubMed  CAS  Google Scholar 

  • Kinkema M, Wang H and Schiefelbein J (1994) Molecular analysis of the myosin gene family in Arabidopsis thaliana. Plant Mol Biol 26: 1139–1153

    Article  PubMed  CAS  Google Scholar 

  • Knight AE and Kendrick-Jones J (1993) A myosin-like protein from a higher plant. J Mol Biol 231:148–154

    Article  PubMed  CAS  Google Scholar 

  • Kohno T, Chaen S and Shimmen T (1990) Characterization of the translocator associated with pollen tube organelles. Protoplasma 154: 179–183

    Article  Google Scholar 

  • Kohno T, Ishikawa R, Nagata T, Kohama K and Shimmen T (1992) Partial purification of myosin from lily pollen tubes by monitoring with in vitro motility assay. Protoplasma 170: 77–85

    Article  CAS  Google Scholar 

  • Kohno T and Shimmen T (1987) Ca2+-induced fragmentation of actin filaments in pollen tubes. Protoplasma 141: 177–179

    Article  CAS  Google Scholar 

  • Kohno T and Shimmen T (1988) Accelerated sliding of pollen tube organelles along Characeae actin bundles regulated by Ca2+. J Cell Biol 106: 1539–1543

    Article  PubMed  CAS  Google Scholar 

  • Kron SJ and Spudich JA (1986) Fluorescent actin filaments move on myosin fixed to a glass surface. Proc Natl Acad Sci USA 83: 6272–6276.

    Article  PubMed  CAS  Google Scholar 

  • Lancelle SA, Cresti M and Hepler PK (1987) Ultrastructure of the cytoskeleton in freeze-substituted pollen tubes of Nicotiana alata. Protoplasma 140: 141–150

    Article  Google Scholar 

  • Lancelle SA, Cresti M and Hepler PK (1997) Growth inhibition and recovery in freeze-substituted Lilium longiflorum pollen tubes: structural effects of caffeine. Protoplasma 196: 21–33

    Article  CAS  Google Scholar 

  • Lancelle SA and Hepler PK (1992) Ultrastructure of freeze-substituted pollen tubes of Lilium longiflorum. Protoplasma 167: 215–230

    Article  Google Scholar 

  • Li Y-Q, Moscatelli A, Cai G and Cresti M (1997) Functional interactions among cytoskeleton, membranes, and cell wall in the pollen tube of flowering plants. Int Rev Cytol 176:133–199

    Article  PubMed  CAS  Google Scholar 

  • Malhó R, Read ND, Pais MS and Trewavas AJ (1994) Role of cytosolic free calcium in the reorientation of pollen tube growth. Plant J 5: 331–341

    Article  Google Scholar 

  • Malhó R, Read ND, Trewavas AJ and Pais MS (1995) Calcium channel activity during pollen tube growth and reorientation. Plant Cell 7: 1173–1184

    PubMed  Google Scholar 

  • Malhó R and Trewavas AJ (1996) Localized apical increases of cytosolic free calcium control pollen tube orientation. Plant Cell 8: 1935–1949

    PubMed  Google Scholar 

  • Matsudaira P (1991) Modular organization of actin crosslinking proteins. Trends Biochem Sci 16: 87–92

    Article  PubMed  CAS  Google Scholar 

  • McCurdy DW and Harmon AC (1992a) Calcium-dependent protein kinase in the green alga Chara. Planta 188: 54–61

    Article  CAS  Google Scholar 

  • McCurdy DW and Harmon AC (1992b) Phosphorylation of a putative myosin light chain in Chara by calcium-dependent protein kinase. Protoplasma 171: 85–88

    Article  CAS  Google Scholar 

  • McCurdy DW and Kim M (1998) Molecular cloning of a novel fimbrin-like cDNA from Arabidopsis thaliana. Plant Mol Biol 36: 23–31

    Article  PubMed  CAS  Google Scholar 

  • Mermall V, Post PL and Mooseker MS (1998) Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science 279: 527–533

    Article  PubMed  CAS  Google Scholar 

  • Michaud D, Guillet G, Rogers PA and Charest PM (1991) Identification of a 220kDa membrane-associated plant cell protein immunologically related to human ß-spectrin. FEBS Lett 294: 77–80

    Article  PubMed  CAS  Google Scholar 

  • Miller DD, Callaham DA, Gross DJ and Hepler PK (1992) Free Ca2+ gradient in growing pollen tubes of Lilium. J Cell Sci 101: 7–12

    CAS  Google Scholar 

  • Miller DD, Lancelle SA and Hepler PK (1996) Actin microfilaments do not form a dense meshwork in Lilium longiflorum pollen tube tips. Protoplasma 195: 123–132

    Article  Google Scholar 

  • Miller DD, Scordilis SP and Hepler PK (1995) Identification and localization of three classes of myosins in pollen tubes of Lilium longiflorum and Nicotiana alata. J Cell Sci 108: 2549–2563

    PubMed  CAS  Google Scholar 

  • Mooseker MS and Cheney RE (1995) Unconventional myosins. Annu Rev Cell Dev Biol 11: 633–675

    Article  PubMed  CAS  Google Scholar 

  • Moutinho A, Love J and Trewavas AJ (1998a) Distribution of calmodulin protein and mRNA in growing pollen tubes Sex Plant Reprod 11: 131–139

    Article  CAS  Google Scholar 

  • Moutinho A, Trewavas AJ and Malhó R (1998b) Relocation of a Ca2+-dependent protein kinase activity during pollen tube reorientation. Plant Cell 10: 1499–1509

    PubMed  CAS  Google Scholar 

  • Muto S and Miyachi S (1984) Production of antibody against spinach calmodulin and its application to radioimmunoassay for plant calmodulin. Z Pflanzenphysiol 114: 421–431

    CAS  Google Scholar 

  • Nagai R (1993) Regulation of intracellular movements in plant cells by environmental stimuli. Int Rev Cytol 145:251–310

    Article  CAS  Google Scholar 

  • Nakayasu T, Yokota E and Shimmen T (1998) Purification of an actin-binding protein composed of 115-kDa polypeptide from pollen tubes of lily. Biochem Biophys Res Comm 249: 61–65

    Article  PubMed  CAS  Google Scholar 

  • Otto JJ (1994) Actin-bundling proteins. Curr Opin Cell Biol 6: 105–109

    Article  PubMed  CAS  Google Scholar 

  • Perdue TD, Mandayam V and Parthasarathy V (1985) In situ localization of F-actin in pollen tubes. Eur J Cell Biol 39: 13–20

    Google Scholar 

  • Pierson ES and Cresti M (1992) Cytoskeleton and cytoplasmic organization of pollen and pollen tubes. Int Rev Cytol 140: 73–125

    Article  CAS  Google Scholar 

  • Pierson ES, Derksen J and Traas JA (1986) Organization of microfilaments and microtubules in pollen tubes grown in vitro or in vivo in various angiosperms. Eur J Cell Biol 41: 14–18

    Google Scholar 

  • Pierson ES, Lichtscheidl IK and Derksen J (1990) Structure and behaviour of organelles in living pollen tubes of Lilium longiflorum. J Exp Bot 41: 1461–1468

    Article  Google Scholar 

  • Pierson ES, Miller DD, Callaham DA, Shipley AM, Rivers BA, Cresti M and Hepler PK (1994) Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: effect of BAPTA-type buffers and hypertonic media. Plant Cell 6: 1815–1828

    PubMed  CAS  Google Scholar 

  • Pierson ES, Miller DD, Callaham DA, van Aken J, Hackett G and Hepler PK (1996) Tiplocalized calcium entry fluctuates during pollen tube growth. Dev Biol 174: 160–173

    Article  PubMed  CAS  Google Scholar 

  • Pollard TD and Cooper JA (1986) Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem 55: 987–1035

    Article  PubMed  CAS  Google Scholar 

  • Putnam-Evans CL, Harmon AC and Cormier MJ (1990) Purification and characterization of a novel calcium-dependent protein kinase from soybean. Biochemistry 29: 2488–2495

    Article  PubMed  CAS  Google Scholar 

  • Putnam-Evans C, Harmon AC, Palevitz BA, Fechheimer M and Cormier MJ (1989) Calcium-dependent protein kinase is localized with F-actin in plant cells. Cell Motil Cytoskel 12: 12–22

    Article  CAS  Google Scholar 

  • Rathore KS, Cork RJ and Robinson KR (1991) A cytoplasmic gradient of Ca2+ is correlated with the growth of lily pollen tubes. Dev Biol 148: 612–619

    Article  PubMed  CAS  Google Scholar 

  • Schuurink RC, Chan PV and Jones RL (1996) Modulation of calmodulin mRNA and protein levels in barley aleurone. Plant Physiol 111: 371–380

    PubMed  CAS  Google Scholar 

  • Shimmen T, Hamatani M, Saito S, Yokota E, Mimura T, Fusetani N and Karaki H (1995) Roles of actin filaments in cytoplasmic streaming and organization of transvacuolar strands in root hair cells of Hydrocharis. Protoplasma 185: 188–193

    Article  CAS  Google Scholar 

  • Shimmen T and Tazawa M (1982) Reconstitution of cytoplasmic streaming in Characeae. Protoplasma 113: 127–131

    Article  Google Scholar 

  • Shimmen T and Yokota E (1994) Physiological and biochemical aspects of cytoplasmic streaming. Int Rev Cytol 155: 97–139

    Article  CAS  Google Scholar 

  • Smallwood MF, Gurr SJ, McPherson MJ, Roberts K and Bowles DJ (1990) Purification and partial sequence analysis of plant annexins. Biochem J 281: 501–505

    Google Scholar 

  • Stossel TP, Chaponnier C, Ezzell RM, Hartwig JH, Janmey PA, Kwiatkowski DJ, Lind SE, Smith DB, Southwick FS, Yin HL and Zaner KS (1985) Nonmuscle actin-binding proteins. Annu Rev Cell Biol 1: 353–402

    Article  PubMed  CAS  Google Scholar 

  • Takagi S, Yokota E, Shimmen T and Nagai R (1995) Motor protein activity for cytoplasmic streaming detected in Vallisneria leaves. Plant Cell Physiol 36: s132

    Google Scholar 

  • Taylor LP and Hepler PK (1997) Pollen germination and tube growth. Annu Rev Plant Physiol Plant Mol Biol 48: 461–491

    Article  PubMed  CAS  Google Scholar 

  • Tilney LG, Connelly PS, Vranich KA, Shaw MK and Guild GM (1998) Why are two different cross-linkers necessary for actin bundle formation in vivo and what does each cross-link contribute? J Cell Biol 143: 121–133

    Article  PubMed  CAS  Google Scholar 

  • Tirlapur UK, Scali M, Moscatelli A, Casino CD, Cai G, Tiezzi A and Cresti M (1994) Confocal image analysis of spatial variations in immunocytochemically identified calmodulin during pollen hydration, germination and pollen tube tip growth in Nicotiana tabacum L. Zygote 2: 63–68

    Article  PubMed  CAS  Google Scholar 

  • Tischendorf G, Sawitzky D and Werz G (1987) Antibodies specific for vertebrate actin, myosin, actinin, or vinculin recognize epitopes in the giant nucleus of the the marine green alga Acetabularia. Cell Motil Cytoskel 7: 78–86

    Article  CAS  Google Scholar 

  • Tiwari SC and Polito VS (1988a) Spatial and temporal organization of actin during hydration, activation, and germination of pollen in Pyrus communis L.: a population study. Protoplasma 147: 5–15

    Article  Google Scholar 

  • Tiwari SC and Polito VS (1988b) Organization of the cytoskeleton in pollen tubes of Pyrus communis: a study employing conventional and freeze-substitution electron microscopy, immunofluorescence, and rhodamine-phalloidin. Protoplasma 147: 100–112

    Article  Google Scholar 

  • Tominaga M, Morita K, Sonobe S, Yokota E and Shimmen T (1997) Microtubules regulate the organization of actin filaments at the cortical region in root hair cells of Hydrocharis. Protoplasma 199: 83–92

    Article  CAS  Google Scholar 

  • Tominaga M, Yokota E, Vidali L, Sonobe S, Hepler PK and Shimmen T (1999) Dynamics of cytoskeletons in root hair cell of Hydrocharis: mechanism of actin filament bundling. Plant Cell Physiol 40: s49

    Google Scholar 

  • Tominaga M, Yokota E, Vidali L, Sonobe S, Hepler PK and Shimmen T (2000) The role of plant villin in the organization of the actin cytoskeleton, cytoplasmic streaming and the architecture of the transvacuolar strand in root hair cells of Hydrocharis. Planta, In press

    Google Scholar 

  • Tominaga Y, Shimmen T and Tazawa M (1983) Control of cytoplasmic streaming by extracellular Ca2+ in permeabilized Nitella cells. Protoplasma 116: 75–77

    Article  CAS  Google Scholar 

  • Tominaga Y, Wayne R, Tung HYL and Tazawa M (1987) Phosphorylation-dephosphorylation is involved in Ca2+-controlled cytoplasmic streaming of characean cells. Protoplasma 136: 161–169

    Article  CAS  Google Scholar 

  • Vidali L, Yokota E, Cheung AY, Shimmen T and Hepler PK (1999) The 135 kDa actin-bundling protein from Lilium longiflorum pollen is the plant homologue of villin. Protoplasma 209: 283–291

    Article  CAS  Google Scholar 

  • Vos JW and Hepler PK (1998) Calmodulin is uniformly distributed during cell division in living stamen hair cells of Tradescantia virginiana. Protoplasma 201: 158–171

    Article  CAS  Google Scholar 

  • Williams R and Coluccio LM (1994) Novel 130-kD rat liver myosin-I will translocate actin filaments. Cell Motil Cytoskel 27: 41–48

    Article  CAS  Google Scholar 

  • Williamson RE (1993) Organelle movements. Annu Rev Plant Physiol Plant Mol Biol 44: 181–202

    Article  Google Scholar 

  • Williamson RE and Ashley CC (1982) Free Ca2+ and cytoplasmic streaming in the alga Chara. Nature 296: 647–651

    Article  PubMed  CAS  Google Scholar 

  • Wolenski JS, Hayden SM, Forscher P and Mooseker MS (1993) Calcium-calmodulin and regulation of brush border myosin-I MgATPase and mechanochemistry. J Cell Biol 122: 613–621

    Article  PubMed  CAS  Google Scholar 

  • Wolenski JS (1995) Regulation of calmodulin-binding myosins. Trends Cell Biol 5: 310–316

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K, Kikuyama M, Sutoh-Yamamoto N and Kamitsubo E (1994) Purification of actin based motor protein from Chara corallina. Proc Japan Acad 70: 175–180

    Article  CAS  Google Scholar 

  • Yamamoto K, Kikuyama M, Sutoh-Yamamoto N, Kamitsubo E and Katayama E (1995) Myosin from alga Chara: unique structure revealed by electron microscopy. J Mol Biol 254:109–112

    Article  PubMed  CAS  Google Scholar 

  • Yang W, Burkhart W, Cavallius J, Merrick WC and Boss WF (1993) Purification and characterization of a phosphatidylinositol 4-kinase activator in carrot cells. J Biol Chem 268: 392–398

    PubMed  CAS  Google Scholar 

  • Yokota E, Mimura T and Shimmen T (1995a) Biochemical, immunochemical and immunohistochemical identification of myosin heavy chains in cultured cells of Catharanthus roseus. Plant Cell Physiol 36: 1541–1547

    CAS  Google Scholar 

  • Yokota E, Muto S and Shimmen T (1997) Actin bundling activity of P-135-ABP isolated from lily pollen tubes is regulated by calcium-calmodulin. Cell Struct Funct 22: 685

    Google Scholar 

  • Yokota E, Muto S and Shimmen T (1999a) Inhibitory regulation of higher-plant myosin by Ca2+ ions. Plant Physiol 119: 231–239

    Article  PubMed  CAS  Google Scholar 

  • Yokota E, McDonald AR, Liu B, Shimmen T and Palevitz BA (1995b) Localization of a 170 kDa myosin heavy chain in plant cells. Protoplasma 185: 178–187

    Article  CAS  Google Scholar 

  • Yokota E and Shimmen T (1994) Isolation and characterization of plant myosin from pollen tubes of lily. Protoplasma 177:153–162

    Article  CAS  Google Scholar 

  • Yokota E and Shimmen T (1999) The 135-kDa actin-bundling protein from lily pollen tubes arranges F-actin into bundles with uniform polarity. Planta 209: 264–266

    Article  PubMed  CAS  Google Scholar 

  • Yokota E, Takahara K and Shimmen T (1998) Actin-bundling protein isolated from pollen tubes of lily. Biochemical and immunocytochemical characterization. Plant Physiol 116: 1421–1429

    Article  PubMed  CAS  Google Scholar 

  • Yokota E, Yukawa C, Muto S, Sonobe S and Shimmen T (1999b) Biochemical and immunocytochemical characterization of two types of myosins in cultured tobacco bright yellow-2 cells. Plant Physiol 121: 525–534

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

C. J. Staiger F. Baluška D. Volkmann P. W. Barlow

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yokota, E., Shimmen, T. (2000). Characterization of Native Actin-Binding Proteins from Pollen. In: Staiger, C.J., Baluška, F., Volkmann, D., Barlow, P.W. (eds) Actin: A Dynamic Framework for Multiple Plant Cell Functions. Developments in Plant and Soil Sciences, vol 89. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9460-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9460-8_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5504-0

  • Online ISBN: 978-94-015-9460-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics