Skip to main content

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 89))

Abstract

Flowering plants rely on the highly polarized process of pollen tube growth for delivery of the sperm cells and thus for sexual reproduction. Although it has long been known that the actin cytoskeleton is necessary for pollen grain germination and tube growth, the precise structure of the actin arrays and their regulation by actin-associated proteins is only starting to be uncovered. Long, axially-oriented bundles of actin are abundant in the shank of pollen tubes but absent in their apices. These bundles function as tracks for the myosindependent cytoplasmic streaming that transports organelles and secretory vesicles in a bi-directional, reverse-fountain pattern. Exocytosis of the vesicles, which is required for cell growth, is restricted to the apex of the pollen tube. To understand these growth-dependent motile processes, actin as well as many actin-binding proteins, are being isolated from pollen and characterized both in vitro and in vivo. Spatial modulation of the actin cytoskeleton may be governed in part by calcium, protons and small GTPases, which are asymmetrically distributed. Understanding how the actin cytoskeleton interacts with these different factors helps us explain the molecular basis of polarized pollen tube growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersland JM, Jagendorf AT and Parthasarathy MV (1992) The isolation of actin from pea roots by DNase I affinity chromotography. Plant Physiol 100: 1716–1723

    PubMed  CAS  Google Scholar 

  • Andre E, Lottspeich F, Schleicher M and Noegel A (1988) Severin, gelsolin, and villin share a homologous sequence in regions presumed to contain F-actin severing domains. J Biol Chem 263: 722–727

    PubMed  CAS  Google Scholar 

  • Cai G, Moscatelli A and Cresti M (1997) Cytoskeletal organization and pollen tube growth. Trends Plant Sci 2: 86–91

    Google Scholar 

  • Carlier M-F, Laurent V, Santolini J, Melki R, Didry D, Xia GX, Hong Y, Chua N-H and Pantaloni D (1997) Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol 136: 1307–1322

    PubMed  CAS  Google Scholar 

  • Carlier M-F, Ressad F and Pantaloni D (1999) Control of actin dynamics in cell motility. Role of ADF/cofilin. J Biol Chem 274: 33827–33830

    PubMed  CAS  Google Scholar 

  • Carlsson L, Nystrom LE, Sundkvist I, Markey F and Lindberg U (1977) Actin polymerizability is influenced by profilin, a low molecular weight protein in non-muscle cells. J Mol Biol 115: 465–483

    PubMed  CAS  Google Scholar 

  • Christensen HE, Ramachandran S, Tan CT, Surana U, Dong CH and Chua NH (1996) Arabidopsis profilins are functionally similar to yeast profllins: identification of a vascular bundle-specific profilin and a pollen-specific profilin. Plant J 10: 269–279

    PubMed  CAS  Google Scholar 

  • Chung YY, Magnuson NS and An GH (1995) Subcellular-localization of actin depolymerizing factor in mature and germinating pollen. Mol Cells 5: 224–229

    Google Scholar 

  • Clarke SR, Staiger CJ, Gibbon BC and Franklin-Tong VE (1998) A potential signaling role for profilin in pollen of Papaver rhoeas. Plant Cell 10: 967–979

    PubMed  CAS  Google Scholar 

  • Coluccio LM and Bretscher A (1989) Reassociation of microvillar core proteins: making a microvillar core in vitro. J Cell Biol 108: 495–502

    PubMed  CAS  Google Scholar 

  • Condeelis JS (1974) The identification of F actin of the pollen tube and protoplast of Amaryllis belladonna. Exp Cell Res 88: 435–439

    PubMed  CAS  Google Scholar 

  • Cresti M, Hepler PK, Tiezzi A and Ciampolini F (1986) Fibrilar strucutres in Nicotinana pollen: Changes in ultrastrucure during pollen activation and tube emission. In: Mulcahy DL, Bergamini-Mulcahy G, Ottaviano E (eds) Biotechnology and Ecology of Pollen. New York: Springer-Verlag, pp 283–288

    Google Scholar 

  • de Win AHN, Knuiman B, Pierson ES, Geurts H, Kengen HMP and Derksen J (1996) Development and cellular organization of Pinus sylvestris pollen tubes. Sex Plant Reprod 9: 93–101

    Google Scholar 

  • de Win AH, Pierson ES and Derksen J (1999) Rational analyses of organelle trajectories in tobacco pollen tubes reveal characteristics of the actomyosin cytoskeleton. Biophys J 76: 1648–1658

    PubMed  Google Scholar 

  • Derksen J, Rutten T, Lichtscheidl IK, de Win AHN, Pierson ES and Rongen G (1995a) Quantitative analysis of the distribution of organelles in tobacco pollen tubes: implications for exocytosis and endocytosis. Protoplasma 188: 267–276

    Google Scholar 

  • Derksen J, Rutten T, van Amstel T, de Win A, Doris F and Steer M (1995b) Regulation of pollen tube growth. Acta Bot Neerl 44: 93–119

    Google Scholar 

  • Doris FP and Steer MW (1996) Effects of fixatives and permeabilisation buffers on pollen tubes: implications for localisation of actin microfilaments using phalloidin staining. Protoplasma 195: 25–36

    CAS  Google Scholar 

  • Drøbak BK, Watkins PAC, Valenta R, Dove SK, Lloyd CW and Staiger Ci (1994) Inhibition of plant plasma membrane phosphoinositide phospholipase C by the actin-binding protein, profilin. Plant J 6: 389–400

    Google Scholar 

  • Durso NA and Cyr RJ (1994) Beyond translation: elongation factor-la and the cytoskeleton. Protoplasma 180: 99–105

    CAS  Google Scholar 

  • Eads JC, Mahoney NM, Vorobiev S, Bresnick AR, Wen KK, Rubenstein PA, Haarer BK and Almo SC (1998) Structure determination and characterization of Saccharomyces cerevisiae profilin. Biochemistry 37: 11171–11181

    PubMed  CAS  Google Scholar 

  • Edmonds BT, Murray J and Condeelis J (1995) pH regulation of the F-actin binding properties of Dictyostelium elongation factor la. J Biol Chem 270: 15222–15230

    PubMed  CAS  Google Scholar 

  • Egile C, Loisel TP, Laurent V, Li R, Pantaloni D, Sansonetti PJ and Carlier M-F (1999) Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin- based motility. J Cell Biol 146: 1319–1332

    PubMed  CAS  Google Scholar 

  • Fedorov AA, Ball T, Mahoney NM, Valenta R and Almo SC (1997) The molecular basis for allergen cross-reactivity: crystal structure and IgE-epitope mapping of birch pollen profilin. Structure 5: 33–45

    PubMed  CAS  Google Scholar 

  • Feijó JA, Malhó R and Obermeyer G (1995) Ion dynamics and its possible role during in vitro pollen germination and tube growth. Protoplasma 187: 155–167

    Google Scholar 

  • Feijó JA, Sainhas J, Hackett GR, Kunkel JG and Hepler PK (1999) Growing pollen tubes possess a constitutive alkaline band in the clear zone and a growth-dependent acidic tip. J Cell Biol 144: 483–496

    PubMed  Google Scholar 

  • Franke WW, Herth W, Van der Woude WJ and Morré DJ (1972) Tubular and filamentous structures in pollen tubes: Possible involvement as guide elements in protoplasmic streaming and vectorial migration of secretory vesicles. Planta 105: 317–341

    Google Scholar 

  • Gibbon BC, Ren H and Staiger CJ (1997) Characterization of maize (Zea mays) pollen nrofilin function in vitro and in live cells. Biochem J 327: 909–915

    PubMed  CAS  Google Scholar 

  • Gibbon BC, Zonia LE, Kovar DR, Hussey PJ and Staiger CJ (1998) Pollen profilin function depends on interaction with proline-rich motifs. Plant Cell 10: 981–93

    PubMed  CAS  Google Scholar 

  • Gibbon BC, Kovar DR and Staiger CJ (1999) Latrunculin B has different effects on pollen germination and tube growth. Plant Cell 11: 2349–2363

    PubMed  CAS  Google Scholar 

  • Giehl K, Valenta R, Rothkegel M, Ronsiek M, Mannherz HG and Jockusch BM (1994) Interaction of plant profilin with mammalian actin. Eur J Biochem 226: 681–689

    PubMed  CAS  Google Scholar 

  • Gilliland LU, McKinney EC, Asmussen MA and Meagher RB (1998) Detection of deleterious genotypes in multigenerational studies. I. Disruptions in individual Arabidopsis actin genes. Genetics 149: 717–725

    PubMed  CAS  Google Scholar 

  • Glenney JR, Jr., Geisler N, Kaulfus P and Weber K (1981) Demonstration of at least two different actin-binding sites in villin, a calcium-regulated modulator of F-actin organization. J Biol Chem 256: 8156–8161

    PubMed  CAS  Google Scholar 

  • Goldschmidt-Clermont PJ, Machesky LM, Doberstein SK and Pollard TD (1991) Mechanism of the interaction of human platelet profilin with actin. J Cell Biol 113: 1081–1089

    PubMed  CAS  Google Scholar 

  • Grote M, Swoboda I, Meagher RB and Valenta R (1995) Localization of profilin- and actin-like immunoreactivity in in vzYro-germinated tobacco pollen tubes by electron microscopy after special water-free fixation techniques. Sex Plant Reprod 8: 180–186

    Google Scholar 

  • Guillen G, Valdés-Lopez V, Noguez R, Olivares J, Rodriguez-Zapata LC, Perez H, Vidali L, Villanueva MA and Sanchez F (1999) Profilin in Phaseolus vulgaris is encoded by two genes (only one expressed in root nodules) but multiple isoforms are generated in vivo by phosphorylation on tyrosine residues. Plant J 19: 497–508

    PubMed  CAS  Google Scholar 

  • Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279: 509–514

    PubMed  CAS  Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y, Cresti M, Tiezzi A and Ciampolini F (1986) Actin during pollen germination. J Cell Sei 86: 1–8

    CAS  Google Scholar 

  • Heslop-Harrison J (1987) Pollen germination and pollen-tube growth. Int Rev Cytol 107: 1–78

    Google Scholar 

  • Heslop-Harrison J and Heslop-Harrison Y (1989a) Actomyosin and movement in the angiosperm pollen tube: an interpretation of some recent results. Sex Plant Reprod 2: 199–207

    Google Scholar 

  • Heslop-Harrison J and Heslop-Harrison Y (1989b) Conformation and movement of the vegetative nucleus of the angiosperm pollen tube: association with the actin cytoskeleton. J Cell Sci 93: 299–308

    Google Scholar 

  • Heslop-Harrison J and Heslop-Harrison Y (1989c) Myosin associated with the surfaces of organelles, vegetative nuclei and generative cells in angiosperm pollen grains and tubes. J Cell Sci 94: 319–325

    Google Scholar 

  • Heslop-Harrison J and Heslop-Harrison Y (1990) Dynamic aspects of apical zonation in the angiosperm pollen tube. Sex Plant Reprod 3: 187–194

    Google Scholar 

  • Heslop-Harrison J and Heslop-Harrison Y (1991a) The actin cytoskeleton in unfixed pollen tubes following microwave-accelerated DMSO-permeabilisation and TRITC-phalloidin staining. Sex Plant Reprod 4: 6–11

    Google Scholar 

  • Heslop-Harrison J and Heslop-Harrison Y (1991b) Restoration of movement and apical growth in the angiosperm pollen tube following cytochalasin-induced paralysis. Phil Trans R Soc Lond 331: 225–235

    Google Scholar 

  • Heslop-Harrison J and Heslop-Harrison Y (1992a) Cyclical transformations of the actin cytoskeleton of hyacinth pollen subjected to recurrent vapour-phase hydration and dehydration. Biol Cell 75: 245–252

    Google Scholar 

  • Heslop-Harrison Y and Heslop-Harrison J (1992b) Germination of monocolpate angiosperm pollen: Evolution of the actin cytoskeleton and wall during hydration, activation and tube emergence. Annals Bot 69: 385–394

    Google Scholar 

  • Hess MW, Mittermann I, Luschnig C and Valenta R (1995) Immunocytochemical localisation of actin and profilin in the generative cell of angiosperm pollen: TEM studies on high-pressure frozen and freeze-substituted Ledebouria socialis Roth (Hyacinthaceae). Histochem Cell Biol 104: 443–451

    PubMed  CAS  Google Scholar 

  • Holdaway-Clarke TL, Feijö JA, Hackett GR, Kunkel JG and Hepler PK (1997) Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium influx is delayed. Plant Cell 9: 1999–2010

    PubMed  CAS  Google Scholar 

  • Holtzman DA, Yang S and Drubin DG (1993) Synthetic-lethal interactions identify two novel genes, SLA1 and SLA2, that control membrane cytoskeleton assembly in Saccharomyces cerevisiae. J Cell Biol 122: 635–644

    PubMed  CAS  Google Scholar 

  • Huang S, McDowell JM, Weise MJ and Meagher RB (1996) The Arabidopsis profilin gene family. Evidence for an ancient split between constitutive and pollen-specific profilin genes. Plant Physiol 111: 115–126

    PubMed  CAS  Google Scholar 

  • Hussey PJ, Yuan M, Calder G, Khan S and Lloyd CW (1998) Microinjection of pollenspecific actin-depolymerizing factor, ZmADF1, reorientates F-actin strands in Tradescantia stamen hair cells. Plant J 14: 353–357

    CAS  Google Scholar 

  • Igarashi H, Vidali L, Yokota E, Sonobe S, Hepler PK and Shimmen I (1999) Actin filaments purified from tobacco cultured BY-2 cells can be translocated by plant myosin. Plant Cell Physiol 40: 1167–1171

    Google Scholar 

  • Iwanami Y (1956) Protoplasmic movement in pollen grains and tubes. Phytomorphology 6: 288–295

    Google Scholar 

  • Jauh GY and Lord EM (1995) Movement of the tube cell in the lily style in the absence of the pollen grain and the spent pollen tube. Sex Plant Reprod 8: 168–172

    Google Scholar 

  • Kaiser DA, Vinson VK, Murphy DB and Pollard TD (1999) Profilin is predominantly associated with monomeric actin in Acanthamoeba. J Cell Sci 112: 3779–3790

    PubMed  CAS  Google Scholar 

  • Kandasamy MK, McKinney EC and Meagher RB (1999) The late pollen-specific actins in angiosperms. Plant J 18: 681–691

    PubMed  CAS  Google Scholar 

  • Karakesisoglou I, Schleicher M, Gibbon BC and Staiger CJ (1996) Plant profilins rescue the aberrant phenotype of profilin-deficient Dictyostelium cells. Cell Motil Cytoskeleton 34: 36–47

    PubMed  CAS  Google Scholar 

  • Kim SR, Kim Y and An G (1993) Molecular cloning and characterization of antherpreferential cDNA encoding a putative actin-depolymerizing factor. Plant Mol Biol 21: 39–45

    PubMed  CAS  Google Scholar 

  • Kinkema M, Wang H and Schiefelbein J (1994) Molecular analysis of the myosin gene family in Arabidopsis thaliana. Plant Mol Biol 26: 1139–1153

    PubMed  CAS  Google Scholar 

  • Klahre U and Chua N-H (1999) The Arabidopsis actin-related protein (AtARP2) RP2) promoter directs expression in xylem precursor cells and pollen. Plant Mol Bio141: 65–73

    Google Scholar 

  • Klahre U, Friederich E, Kost B, Louvard D and Chua N-H (2000) Villin-like actin-binding proteins are expressed ubiquitously in Arabidopsis. Plant Physiol 122: 35–48

    PubMed  CAS  Google Scholar 

  • Kohno T and Shimmen T (1987) Ca2±-induced fragmentation of actin filaments in pollen tubes. Protoplasma 141: 177–179

    CAS  Google Scholar 

  • Kohno T and Shimmen T (1988) Accelerated sliding of pollen tube organelles along Characeae actin bundles regulated by Ca2±. J Cell Biol 106: 1539–1543

    PubMed  CAS  Google Scholar 

  • Kost B, Spielhofer P and Chua N-H (1998) A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J 16: 393 – 401

    PubMed  CAS  Google Scholar 

  • Kost B, Lemichez E, Spielhofer P, Hong Y, Tolias K, Carpenter C and Chua N-H (1999) Rac homologues and compartmentalized phosphatidylinositol 4,5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol 145: 317–330

    PubMed  CAS  Google Scholar 

  • Krauze K, Makuch R, Stepka M and Dabrowska R (1998) The first caldesmon-like protein in higher plants. Biochem Biophys Res Comm 247: 576–579

    PubMed  CAS  Google Scholar 

  • Lancelle SA, Cresti M and Hepler PK (1987) Ultrastructure of the cytoskeleton in freezesubstituted pollen tubes of Nicotiana alata. Protoplasma 140: 141–150

    Google Scholar 

  • Lancelle SA and Hepler PK (1989) Immunogold labelling of actin on sections of freezesubstituted plant cells. Protoplasma 150: 72–74

    Google Scholar 

  • Lancelle SA and Hepler PK (1991) Association of actin with cortical microtubules revealed by immunogold localization in Nicotiana pollen tubes. Protoplasma 165: 167–172

    CAS  Google Scholar 

  • Lancelle SA and Hepler PK (1992) Ultrastructure of freeze-substituted pollen tubes of Lilium longiflorum. Protoplasma 167: 215–230

    Google Scholar 

  • Lazzaro MD (1996) The actin microfilaments network within elongation pollen tubes of the gymnosperm Picea abies (Norway spruce). Protoplasma 194: 186–194

    CAS  Google Scholar 

  • Hussey PJ, Yuan M, Calder G, Khan S and Lloyd CW (1998) Microinjection of pollenspecific actin-depolymerizing factor, ZmADF1, reorientates F-actin strands in Tradescantia stamen hair cells. Plant J 14: 353–357

    CAS  Google Scholar 

  • Igarashi H, Vidali L, Yokota E, Sonobe S, Hepler PK and Shimmen I (1999) Actin filaments purified from tobacco cultured BY-2 cells can be translocated by plant myosin. Plant Cell Physiol 40: 1167–1171

    Google Scholar 

  • Iwanami Y (1956) Protoplasmic movement in pollen grains and tubes. Phytomorphology 6: 288–295

    Google Scholar 

  • Jauh GY and Lord EM (1995) Movement of the tube cell in the lily style in the absence of the pollen grain and the spent pollen tube. Sex Plant Reprod 8: 168–172

    Google Scholar 

  • Kaiser DA, Vinson VK, Murphy DB and Pollard TD (1999) Profilin is predominantly associated with monomeric actin in Acanthamoeba. J Cell Sci 112: 3779–3790

    PubMed  CAS  Google Scholar 

  • Kandasamy MK, McKinney EC and Meagher RB (1999) The late pollen-specific actins in angiosperms. Plant J 18: 681–691

    PubMed  CAS  Google Scholar 

  • Karakesisoglou I, Schleicher M, Gibbon BC and Staiger CJ (1996) Plant profilins rescue the aberrant phenotype of profilin-deficient Dictyostelium cells. Cell Motil Cytoskeleton 34: 36–47

    PubMed  CAS  Google Scholar 

  • Kim SR, Kim Y and An G (1993) Molecular cloning and characterization of antherpreferential cDNA encoding a putative actin-depolymerizing factor. Plant Mol Biol 21: 39–45

    PubMed  CAS  Google Scholar 

  • Kinkema M, Wang H and Schiefelbein J (1994) Molecular analysis of the myosin gene family in Arabidopsis thaliana. Plant Mol Biol 26: 1139–1153

    PubMed  CAS  Google Scholar 

  • Klahre U and Chua N-H (1999) The Arabidopsis actin-related protein (AtARP2) RP2) promoter directs expression in xylem precursor cells and pollen. Plant Mol Bio 141: 65–73

    Google Scholar 

  • Klahre U, Friederich E, Kost B, Louvard D and Chua N-H (2000) Villin-like actin-binding proteins are expressed ubiquitously in Arabidopsis. Plant Physiol 122: 35–48

    PubMed  CAS  Google Scholar 

  • Kohno T and Shimmen T (1987) Ca2±-induced fragmentation of actin filaments in pollen tubes. Protoplasma 141: 177–179

    CAS  Google Scholar 

  • Kohno T and Shimmen T (1988) Accelerated sliding of pollen tube organelles along Characeae actin bundles regulated by Ca2±. J Cell Biol 106: 1539–1543

    PubMed  CAS  Google Scholar 

  • Kost B, Spielhofer P and Chua N-H (1998) A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J 16: 393–401

    PubMed  CAS  Google Scholar 

  • Kost B, Lemichez E, Spielhofer P, Hong Y, Tolias K, Carpenter C and Chua N-H (1999) Rac homologues and compartmentalized phosphatidylinositol 4,5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol 145: 317–330

    PubMed  CAS  Google Scholar 

  • Krauze K, Makuch R, Stepka M and Dabrowska R (1998) The first caldesmon-like protein in higher plants. Biochem Biophys Res Comm 247: 576–579

    PubMed  CAS  Google Scholar 

  • Lancelle SA, Cresti M and Hepler PK (1987) Ultrastructure of the cytoskeleton in freezesubstituted pollen tubes of Nicotiana alata. Protoplasma 140: 141–150

    Google Scholar 

  • Lancelle SA and Hepler PK (1989) Immunogold labelling of actin on sections of freezesubstituted plant cells. Protoplasma 150: 72–74

    Google Scholar 

  • Lancelle SA and Hepler PK (1991) Association of actin with cortical microtubules revealed by immunogold localization in Nicotiana pollen tubes. Protoplasma 165: 167–172

    CAS  Google Scholar 

  • Lancelle SA and Hepler PK (1992) Ultrastructure of freeze-substituted pollen tubes of Lilium longiflorum. Protoplasma 167: 215–230

    Google Scholar 

  • Lazzaro MD (1996) The actin microfilaments network within elongation pollen tubes of the gymnosperm Picea abies (Norway spruce). Protoplasma 194: 186–194

    CAS  Google Scholar 

  • Lin Y, Wang Y, Zhu JK and Yang Z (1996) Localization of a Rho GTPase implies a role in tip growth and movement of the generative cell in pollen tubes. Plant Cell 8: 293–303

    PubMed  CAS  Google Scholar 

  • Lin Y and Yang Z (1997) Inhibition of pollen tube elongation by microinjected anti-RoplPs antibodies suggests a crucial role for Rho-type GTPases in the control of tip growth. Plant Cell 9: 1647–1659

    PubMed  CAS  Google Scholar 

  • Liu X and Yen L-F (1992) Purification and characterization of actin from maize pollen. Plant Physiol 99: 1151–1155

    PubMed  CAS  Google Scholar 

  • Liu X and Yen LF (1995) Interaction of pollen F-actin with rabbit muscle myosin and its subfragments (HMM, SI). Protoplasma 186: 87–92

    CAS  Google Scholar 

  • Loisel TP, Boujemaa R, Pantaloni D and Carlier M-F (1999) Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401: 613–616

    PubMed  CAS  Google Scholar 

  • Lopez I, Anthony RG, Maciver SK, Jiang C-J, Khan S, Weeds AG and Hussey PJ (1996) Pollen specific expression of maize genes encoding actin depolymerizing factor-like proteins. Proc Natl Acad Sci USA 93: 7415–7420

    PubMed  CAS  Google Scholar 

  • Machesky LM and Pollard TD (1993) Profilins. In: Kreis T, Vale R (eds) Guidebook to the Cytoskeletal and Motor Proteins. New York: Oxford University Press Inc. pp 66–68

    Google Scholar 

  • Machesky LM, Atkinson S J, Ampe C, Vandekerckhove J and Pollard TD (1994) Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin-agarose. J Cell Biol 127: 107–115

    PubMed  CAS  Google Scholar 

  • Machesky LM, Reeves E, Wientjes F, Mattheyse FJ, Grogan A, Totty NF, Burlingame AL, Hsuan JJ and Segal AW (1997) Mammalian actin-related protein 2/3 complex localizes to regions of lamellipodial protrusion and is composed of evolutionarily conserved proteins. Biochem J 328: 105–112

    PubMed  CAS  Google Scholar 

  • Machesky LM and Gould KL (1999) The Arp2/3 complex: a multifunctional actin organizer. Curr Opin Cell Biol 11: 117–121

    PubMed  CAS  Google Scholar 

  • Mascarenhas JP and Lafountain J (1972) Protoplasmic streaming, cytochalasin B, and growth of the pollen tube. Tissue Cell 4: 11–14

    PubMed  CAS  Google Scholar 

  • Mascarenhas JP (1993) Molecular mechanisms of pollen tube growth and differentiation. Plant Cell 5: 1303–1314

    PubMed  CAS  Google Scholar 

  • May RC, Hall ME, Higgs HN, Pollard TD, Chakraborty T, Wehland J, Machesky LM and Sechi AS (1999) The Arp2/3 complex is essential for the actin-based motility of Listeria monocytogenes. Curr Biol 9: 759–762

    PubMed  CAS  Google Scholar 

  • McCurdy DW and Kim M (1998) Molecular cloning of a novel fimbrin-like cDNA from Arabidopsis thaliana. Plant Mol Biol 36: 23–31

    PubMed  CAS  Google Scholar 

  • McDowell JM, Huang S, McKinney EC, An YQ and Meagher RB (1996) Structure and evolution of the actin gene family in Arabidopsis thaliana. Genetics 142: 587–602

    PubMed  CAS  Google Scholar 

  • Meagher RB, McKinney EC and Kandasamy MK (1999) Isovariant dynamics expand and buffer the responses of complex systems. The diverse plant actin gene family. Plant Cell 11:995–1006

    PubMed  CAS  Google Scholar 

  • Melan MA and Sluder G (1992) Redistribution and differential extraction of soluble proteins in permeabilized cultured cells: implications for immunofluorescence microscopy. J Cell Sci 101: 731–743

    PubMed  Google Scholar 

  • Miller DD, Scordilis SP and Hepler PK (1995) Identification and localization of three classes of myosins in pollen tubes of Lilium longiflorum and Nicotiana alata. J Cell Sci 108: 2549–2563

    PubMed  CAS  Google Scholar 

  • Miller DD, Lancelle SA and Hepler PK (1996) Actin microfilaments do not form a densemeshwork in Lilium longiflorum pollen tube tips. Protoplasma 195: 123–132

    Google Scholar 

  • Mittermann I, Swoboda I, Pierson E, Eller N, Kraft D, Valenta R and Heberle-Bors E (1995) Molecular cloning and characterization of profilin from tobacco (Nicotiana tabacum): increased profilin expression during pollen maturation. Plant Mol Biol 27: 137–146

    PubMed  CAS  Google Scholar 

  • Mockrin SC and Korn ED (1980) Acanthamoeba profilin interacts with G-actin to increase the rate of exchange of actin-bound adenosine 5’-triphosphate. Biochemistry 19: 5359–5362

    PubMed  CAS  Google Scholar 

  • Mooseker MS and Cheney RE (1995) Unconventional myosins. Annu Rev Cell Dev Biol 11: 633–675

    PubMed  CAS  Google Scholar 

  • Nakayasu T, Yokota E and Shimmen T (1998) Purification of an actin-binding protein composed of 115-kDa polypeptide from pollen tubes of lily. Biochem Biophys Res Comm 249: 61–65

    PubMed  CAS  Google Scholar 

  • Pantaloni D and Carlier M-F (1993) How profilin promotes actin filament assembly in the presence of thymosin ß4. Cell 75: 1007–1014

    PubMed  CAS  Google Scholar 

  • Perdue TD and Parthasarathy MV (1985) In situ localization of F-actin in pollen tubes. Eur J Cell Biol 39: 13–20

    Google Scholar 

  • Perelroizen I, Didry D, Christensen H, Chua N-H and Carlier M-F (1996) Role of nucleotide exchange and hydrolysis in the function of profilin in action assembly. J Biol Chem 271: 12302–12309

    PubMed  CAS  Google Scholar 

  • Picton JM and Steer MW (1981) Determination of secretory vesicle production rates by dictyosomes in pollen tubes of Tradescantia using cytochalasin D. J Cell Sci 49: 261–272

    PubMed  CAS  Google Scholar 

  • Picton JM and Steer MW (1982) A model for the mechanism of tip extension in pollen tubes. J theor Biol 98: 15–20

    Google Scholar 

  • Picton JM and Steer MW (1983) Membrane recycling and the control of secretory activity in pollen tubes. J Cell Sci 63: 303–310

    PubMed  CAS  Google Scholar 

  • Pierson ES, Derksen J and Traas JA (1986) Organization of microfilaments and microtubules in pollen tubes grown in vitro or in vivo in various angiosperms. Eur J Cell Biol 41: 14–18

    Google Scholar 

  • Pierson ES (1988) Rhodamine-phalloidin staining of F-actin in pollen after dimethyl sulphoxide permeabilisation. A comparison with the conventional formaldehyde preparation. Sex Plant Reprod 1: 83–87

    Google Scholar 

  • Pierson ES, Kengen HMP and Derksen J (1989) Microtubules and actin filaments co-localize in pollen tubes of Nicotiana tabacum L. and Lilium longifl’orum thumb. Protoplasma 150: 75–77

    Google Scholar 

  • Pierson ES and Cresti M (1992) Cytoskeleton and cytoplasmic organization of pollen and pollen tubes. Int Rev Cytol 140: 73–125

    CAS  Google Scholar 

  • Pierson ES, Miller DD, Callaham DA, van Aken J, Hackett G and Hepler PK (1996) Tiplocalized calcium entry fluctuates during pollen tube growth. Devel Biol 174: 160–173

    CAS  Google Scholar 

  • Putnam-Evans C, Harmon A, Palevitz BA, Fechheimer M and Cormier MJ (1989) Calciumdependent protein kinase is localized with F-actin in plant cells. Cell Motil Cytoskeleton 12: 12–22

    CAS  Google Scholar 

  • Ren HY, Gibbon BC, Ashworth SL, Sherman DM, Yuan M and Staiger CJ (1997) Actin purified from maize pollen functions in living plant cells. Plant Cell 9: 1445–1457

    PubMed  CAS  Google Scholar 

  • Ressad F, Didry D, Xia GX, Hong Y, Chua NH, Pantaloni D and Carlier MF (1998) Kinetic analysis of the interaction of actin-depolymerizing factor (ADF)/cofilin with G- and Factins. Comparison of plant and human ADFs and effect of phosphorylation. J Biol Chem 273: 20894–20902

    PubMed  CAS  Google Scholar 

  • Rothkegel M, Mayboroda O, Rohde M, Wucherpfennig C, Valenta R and Jockusch BM (1996) Plant and animal profilins are functionally equivalent and stabilize microfilaments in living animal cells. J Cell Sci 109: 83–90

    PubMed  CAS  Google Scholar 

  • Rutten TLM and Derksen J (1990) Organization of actin filaments in regenerating and outgrowing subprotoplasts from pollen tubes of Nicotiana tabacum L. Planta 180: 471–479

    Google Scholar 

  • Shibayama T, Carboni JM and Mooseker MS (1987) Assembly of the intestinal brush border: appearance and redistribution of microvillar core proteins in developing chick enterocytes. J Cell Biol 105: 335–344

    PubMed  CAS  Google Scholar 

  • Smertenko AP, Jiang CJ, Simmons NJ, Weeds AG, Davies DR and Hussey PJ (1998) Ser6 in the maize actin-depolymerizing factor, ZmADF3, is phosphorylated by a calcium-stimulated protein kinase and is essential for the control of functional activity. Plant J 14: 187–193

    PubMed  CAS  Google Scholar 

  • Sonobe S and Shibaoka H (1989) Cortical fine actin filaments in higher plant cells visualized by rhodamine-phalloidin after pretreatment with m-maleimidobenzoyl N-hydroxysuccinimide ester. Protoplasma 148: 80–86

    Google Scholar 

  • Staiger CJ and Schliwa M (1987) Actin localization and function in higher plants. Protoplasma 141: 1–12

    CAS  Google Scholar 

  • Staiger CJ, Goodbody KC, Hussey PJ, Valenta R, Drabak BK and Lloyd CW (1993) The profilin multigene family of maize: differential expression of three isoforms. Plant J 4: 631–641

    PubMed  CAS  Google Scholar 

  • Staiger CJ, Gibbon BC, Kovar DR and Zonia LE (1997) Profilin and actin depolymenzing factor: modulators of actin organization in plants. Trends Plant Sci 2: 275–281

    Google Scholar 

  • Steer MW and Steer JM (1989) Pollen tube tip growth. New Phytol 111: 323–358

    Google Scholar 

  • Svitkina TM and Borisy GG (1999) Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J Cell Biol 145: 1009–1026

    PubMed  CAS  Google Scholar 

  • Tanaka I and Wakabayashi T (1992) Organization of the actin and microtubule cytoskeleton preceding pollen germination. An analysis using cultured pollen protoplasts of Lilium longiflorum. Planta 186: 473–482

    CAS  Google Scholar 

  • Tang XJ, Hepler PK and Scordilis SP (1989) Immunochemical and immunocytochemical identification of a myosin heavy chain polypeptide in Nicotiana pollen tubes. J Cell Sci 92: 569–574

    PubMed  CAS  Google Scholar 

  • Taylor LP and Hepler PK (1997) Pollen germination and tube growth. Ann Rev Plant Physiol Plant Molec Biol 48: 461–491

    CAS  Google Scholar 

  • Theriot JA and Mitchison TJ (1993) The three faces of profilin. Cell 75: 835–838

    PubMed  CAS  Google Scholar 

  • Thorn KS, Christensen HE, Shigeta R, Huddler D, Shalaby L, Lindberg U, Chua NH and Schutt CE (1997) The crystal structure of a major allergen from plants. Structure 5: 19–32

    PubMed  CAS  Google Scholar 

  • Tirlapur UK, Cai G, Faleri C, Moscatelli A, Scali M, Del Casino C, Tiezzi A and Cresti M (1995) Confocal imaging and immunogold electron microscopy of changes in distribution of myosin during pollen hydration, germination and pollen tube growth in Nicotiana tabacum L. Eur J Cell Biol 67: 209–217

    PubMed  CAS  Google Scholar 

  • Tiwari SC and Polito VS (1988a) Organization of the cytoskeleton in pollen tubes of Pyrus communis: a study employing conventional and freeze-substitution electron microscopy, immunofluorescence, and rhodamine-phalloidin. Protoplasma 147: 100–112

    Google Scholar 

  • Tiwari SC and Polito VS (1988b) Spatial and temporal organization of actin during hydration, activation, and germination of pollen in Pyrus communis L.:a population study. Protoplasma 147: 5–15

    Google Scholar 

  • Tominaga M, Morita K, Sonobe S, Yokota E and Shimmen T (1997) Microtubules regulate the organization of actin filaments at the cortical region in root hair cells of Hydrocharis. Protoplasma 199: 83–92

    CAS  Google Scholar 

  • Tominaga M, Yokota E, Vidali L, Sonobe S, Hepler PK and Shimmen T (2000) Organization of actin cytoskeleton responsible for cytoplasmic streaming and for architecture of transvacuolar strand in root hair cells of Hydrocharis. Planta, In press

    Google Scholar 

  • Valenta R, Duchêne M, Pettenburger K, Sillaber C, Valent P, Bettelheim P, Breitenbach M, Rumpold H, Kraft D and Scheiner O (1991) Identification of profilin as a novel pollen allergen; IgE autoreactivity in sensitized individuals. Science 253: 557–560

    PubMed  CAS  Google Scholar 

  • Vidali L and Hepler PK (1996) Purification and characterization of actin from Lilium longiflorum pollen. Mol Biol Cell 7: 2178 Suppl.

    Google Scholar 

  • Vidali L and Hepler PK (1997) Characterization and localization of profilin in pollen grains and tubes of Lilium longiflorum. Cell Motil Cytoskeleton 36: 323–338

    PubMed  CAS  Google Scholar 

  • Vidali L, Yokota E, Cheung AY, Shimmen T and Hepler PK (1999) The 135 kDa actinbundling protein from Lilium longiflorum pollen is the plant homologue of villin. Protoplasma 209: 283–291

    CAS  Google Scholar 

  • Vitale ML, Rodriguez Del Castillo A, Tchakarov L and Trifaro JM (1991) Cortical filamentous actin disassembly and scinderin redistribution during chromaffin cell stimulation precede exocytosis, a phenomenon not exhibited by gelsolin. J Cell Biol 113: 1057–67

    PubMed  CAS  Google Scholar 

  • von Witsch M, Baluska F, Staiger CJ and Volkmann D (1998) Profilin is associated with the plasma membrane in microspores and pollen. Eur J Cell Biol 77: 303–312

    Google Scholar 

  • Vos JW and Hepler PK (1998) Calmodulin is uniformly distributed during cell division in living stamen hair cells of Tradescantia virginiana. Protoplasma 201: 158–171

    CAS  Google Scholar 

  • Vrtala S, Wiedemann P, Mittermann I, Eichler HG, Sperr WR, Valent P, Kraft D and Valenta R (1996) High-level expression in Escherichia coli and purification of recombinant plant profilins: comparison of IgE-binding capacity and allergenic activity. Biochem Biophys Res Comm 226: 42–50

    PubMed  CAS  Google Scholar 

  • Winter D, Podtelejnikov AV, Mann M and Li R (1997) The complex containing actin-related proteins Arp2 and Arp3 is required for the motility and integrity of yeast actin patches. Curr Biol 7: 519–529

    PubMed  CAS  Google Scholar 

  • Yang Z (1998) Signaling tip growth in plants. Curr Opin Plant Biol 1: 525–530

    PubMed  CAS  Google Scholar 

  • Yen L-F, Liu X and Cai S (1995) Polymerization of actin from maize pollen. Plant Physiol 107: 73–76

    PubMed  CAS  Google Scholar 

  • Yin HL, Janmey PA and Schleicher M (1990) Severin is a gelsolin prototype. FEBS Left 264: 78–80

    CAS  Google Scholar 

  • Yokota E and Shimmen T (1994) Isolation and characterization of plant myosin from pollen tubes of lily. Protoplasma 177: 153–162

    CAS  Google Scholar 

  • Yokota E, McDonald AR, Liu B, Shimmen T and Palevitz BA (1995) Localization of a 170kDa myosin heavy chain in plant cells. Protoplasma 185: 178–187

    CAS  Google Scholar 

  • Yokota E, Takahara K. and Shimmen T (1998) Actin-bundling protein isolated from pollen tubes of lily. Biochemical and immunocytochemical characterization. Plant Physiol 116: 1421–1429

    PubMed  CAS  Google Scholar 

  • Yokota E, Muto S and Shimmen T (1999) Inhibitory regulation of higher-plant myosin by Ca2+ ions. Plant Physiol 119: 231–240

    PubMed  CAS  Google Scholar 

  • Yokota E and Shimmen T (1999) The 135-kDa actin-bundling protein from lily pollen tubes arranges F- actin into bundles with uniform polarity. Planta 209: 264–266

    PubMed  CAS  Google Scholar 

  • Yonezawa N, Nishida E and Sakai H (1985) pH control of actin polymerization by cofilin. J Biol Chem 260: 14410–14412

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

C. J. Staiger F. Baluška D. Volkmann P. W. Barlow

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vidali, L., Hepler, P.K. (2000). Actin in Pollen and Pollen Tubes. In: Staiger, C.J., Baluška, F., Volkmann, D., Barlow, P.W. (eds) Actin: A Dynamic Framework for Multiple Plant Cell Functions. Developments in Plant and Soil Sciences, vol 89. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9460-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9460-8_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5504-0

  • Online ISBN: 978-94-015-9460-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics