Skip to main content

Actin in Characean Rhizoids and Protonemata

Tip growth, gravity sensing and photomorphogenesis

  • Chapter

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 89))

Abstract

Unicellular tip-growing cells are frequently used for investigating structural and functional aspects of the plant cytoskeleton as well as the mechanisms of oriented tip growth. Cell extension, sensing of and the response to external stimuli are all confined to a small region at the tip, the apical dome. Rhizoids and protonemata of the characean green algae are almost identical in form and both use unique BaSO4-crystal-filled statoliths for their gravity-oriented tip growth. Despite these similarities, the direction of graviresponses of rhizoids and protonemata are opposite. The actin cytoskeleton of both cell types interacts differently with the statoliths in the mediation of their positioning and movement. This cytoskeleton is also central to the mechanisms of the opposite gravitropic tip growth as well as to several other motile processes, including cytoplasmic streaming and vesicle trafficking. In this chapter, we summarize the current knowledge of the complex architecture of the actin cytoskeleton in characean rhizoids and protonemata. We present the existing models for differential gravitropic tip growth that have resulted from multiple approaches to characterize actin’s various functions in the different zones of these tip-growing cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackers D, Buchen B, Hejnowicz Z and Sievers A (2000) The pattern of acropetal and basipetal streaming velocities in Chara rhizoids and protonemata, and gravity effect on the pattern as measured by laser-Doppler-velocimetry. Planta, in press

    Google Scholar 

  • Bartnik E and Sievers A (1988) In-vivo observation of a spherical aggregate of endoplasmic reticulum and of Golgi vesicles in the tip of fast-growing Chara rhizoids. Planta 176: 1–9

    Article  Google Scholar 

  • Bartnik E, Hejnowicz Z and Sievers A (1990) Shuttle-like movements of Golgi vesicles in the tip of growing Chara rhizoids. Protoplasma 159: 1–8

    Article  Google Scholar 

  • Bibikova TN, Zhigilei A and Gilroy S (1997) Root hair growth in Arabidopsis thaliana is directed by calcium and an endogenous polarity. Planta 203: 495–505

    Article  PubMed  CAS  Google Scholar 

  • Braun M (1996a) Immunolocalization of myosin in rhizoids of Chara globularis Thuill. Protoplasma 191: 1–8

    Article  CAS  Google Scholar 

  • Braun M (1996b) Anomalous gravitropic response of Chara rhizoids during enhanced accelerations. Planta 199: 443–455

    Article  PubMed  CAS  Google Scholar 

  • Braun M (1997) Gravitropism in tip-growing cells. Planta 203: S11-S19

    Article  PubMed  CAS  Google Scholar 

  • Braun M and Sievers A (1993) Centrifugation causes adaptation of microfilaments; studies on the transport of statoliths in gravity sensing Chara rhizoids. Protoplasma 174: 50–61

    Article  PubMed  CAS  Google Scholar 

  • Braun M and Sievers A (1994) Role of the microtubule cytoskeleton in gravisensing Char a rhizoids. Eur J Cell Biol 63: 289–298

    PubMed  CAS  Google Scholar 

  • Braun M and Wasteneys GO (1998a) Distribution and dynamics of the cytoskeleton in graviresponding protonemata and rhizoids of characean algae: Exclusion of microtubules and a convergence of actin filaments in the apex suggest an actin-mediated gravitropism. Planta 205: 39–50

    Article  PubMed  CAS  Google Scholar 

  • Braun M and Wasteneys GO (1998b) Reorganization of the actin and microtubule cytoskeleton throughout blue-light-induced differentiation of characean protonemata into multicellular thalli. Protoplasma 202: 38–53

    Article  Google Scholar 

  • Braun M and Richter P (1999) Relocalization of the calcium gradient and a dihydropyridine receptor is involved in upward bending by bulging of Chara protonemata, but not in downward bending by bowing of Chara rhizoids. Planta 209: 414–423

    Article  PubMed  CAS  Google Scholar 

  • Braun M, Baluška F, von Witsch M and Menzel D (1999a) Redistribution of actin, profiling and phosphatidylinositol-4,5-bisphosphate (PIP2) in growing and maturing root hairs. Planta 209: 435–443

    Article  PubMed  CAS  Google Scholar 

  • Braun M, Buchen B and Sievers A (1999b) Electron microscopical analysis of gravisensing Chara rhizoids developed under microgravity conditions. FASEB J 13: 113–120

    Google Scholar 

  • Buchen B, Hejnowicz Z, Braun M and Sievers A (1991) Cytoplasmic streaming in Chara rhizoids: Studies in a reduced gravitational field during parabolic flights of rockets. Protoplasma 165:121–126

    Article  PubMed  CAS  Google Scholar 

  • Buchen B, Braun M, Hejnowicz Z and Sievers A (1993) Statoliths pull on microfilaments. Experiments under microgravity. Protoplasma 172: 38–42

    Article  PubMed  CAS  Google Scholar 

  • Buchen B, Braun M and Sievers A (1997) Statoliths, cytoskeletal elements and cytoplasmic streaming of Chara rhizoids under reduced gravity during TEXUS flights. In: Life Sciences Experiments Performed on Sounding Rockets (1985–1994). Nordwijk, ESA Publications Division, ESA-SP 1206, pp 71–75

    Google Scholar 

  • Buder J (1961) Der Geotropismus der Characeenrhizoide. Ber Dtsch Bot Ges 74: (14)-(23)

    Google Scholar 

  • Cai G, Moscatelli A and Cresti M (1997) Cytoskeletal organization and pollen tube growth. Trends Plant Sci 2: 86–91

    Article  Google Scholar 

  • Cai W, Braun M and Sievers A (1997) Displacement of statoliths in Chara rhizoids during horizontal rotation on clinostats. Acta Bot Exp Sinica 30: 147–155

    CAS  Google Scholar 

  • Chen R, Rosen E and Masson PH (1999) Gravitropism in higher plants. Plant Physiol 120: 343–350

    Article  PubMed  CAS  Google Scholar 

  • Foissner I and Wasteneys GO (1999) Microtubules at wound sites of Nitella internodal cells passively coalign with actin bundles when exposed to hydrodynamic forces generated by cytoplasmic streaming. Planta 208: 480–490

    Article  CAS  Google Scholar 

  • Foissner I and Wasteneys GO (2000) Nuclear crystals, lampbrush-chromosome-like structures and perinuclear cytoskeletal elements associated with nuclear fragmentation in characean internodal cells. Protoplasma, in press

    Google Scholar 

  • Franklin-Tong VE (1999) Signaling and the modulation of pollen tube growth. Plant Cell 11: 727–738

    PubMed  CAS  Google Scholar 

  • Friedrich ULD, Joop O, Pütz C and Willich G (1996) The slow rotating centrifuge microscope NIZEMI: A versatile instrument for terrestrial hypergravity and space microgravity research in biology and material science. J Biotech 47: 225–238

    Article  CAS  Google Scholar 

  • Fritsch FE (1935) The Structure and Reproduction of the Algae. vol 1, London: Cambridge University Press, pp 447–469

    Google Scholar 

  • Giesenhagen K (1896) Untersuchungen über die Characeen. Flora 82: 381–433

    Google Scholar 

  • Giesenhagen K (1901) Über innere Vorgänge bei der gravitropischen Krümmung der Wurzeln von Chara. Ber Dtsch Bot Ges 19: 277–285

    Google Scholar 

  • Green PB, Erickson RO and Richmond PA (1970) On the physical basis of cell morphogenesis. Ann NY Acad Sci 175: 712–731

    Article  Google Scholar 

  • Hejnowicz Z and Sievers (1971) Mathematical model of geotropically bending Chara rhizoids. Z Pflanzenphysiol. 66: 34–48

    Google Scholar 

  • Hejnowicz Z and Sievers A (1981) Regulation of the position of statoliths in Chara rhizoids. Protoplasma 108: 117–137

    Article  PubMed  CAS  Google Scholar 

  • Hejnowicz Z, Buchen B and Sievers A (1985) The endogenous difference in the rate of acropetal and basipetal cytoplasmic streaming in Chara rhizoids is enhanced by gravity. Protoplasma 125: 219–229

    Article  Google Scholar 

  • Hodick D (1993) The protonema of Chara fragilis Desv.: Regenerative formation, photomorphogenesis, and gravitropism. Bot Acta 106: 388–393

    PubMed  CAS  Google Scholar 

  • Hodick D (1994) Negative gravitropism in Chara protonemata and rhizoids: A model integrating the opposite gravitropic responses of protonemata and rhizoids. Planta 195: 43–49

    Article  PubMed  CAS  Google Scholar 

  • Hodick D and Sievers A (1998) Hypergravity can reduce but not enhance the gravitropic response of Chara globularis protonemata. Protoplasma 204: 145–154

    Article  PubMed  CAS  Google Scholar 

  • Hodick D, Buchen B and Sievers A (1998) Statolith positioning by microfilaments in Chara rhizoids and protonemata. Adv Space Res 21: 1183–1189

    Article  PubMed  CAS  Google Scholar 

  • Jackson SL and Heath IB (1990) Visualization of actin arrays in growing hyphae of the fungus Saprolegniaferax. Protoplasma 154: 66–70

    Article  Google Scholar 

  • Jarosch R (1956) Aktiv bewegungsfahige Plasmaelemente und Chloroplastenrotation bei Characeen. Anz Österr Akad Wiss 6: 58–60

    Google Scholar 

  • Kadota A., Yoshizaki N and Wada M (1999) Cytoskeletal changes during resumption of tip growth in nongrowing protonemal cells of the fern Adiantum capillus-veneris L. Protoplasma 207: 195–202

    Article  Google Scholar 

  • Kachar B and Reese TS (1988) The mechanism of cytoplasmic streaming in characean algal cells: sliding of endoplasmic reticulum along actin filaments. J Cell Biol 106: 1545–1552

    Article  PubMed  CAS  Google Scholar 

  • Kuroda K (1990) Cytoplasmic streaming in plant cells. Int Rev Cytol 121: 267–307

    Article  CAS  Google Scholar 

  • Leitz G, Schnepf E and Greulich KO (1995) Micromanipulation of statoliths in gravity-sensing Chara rhizoids by optical tweezers. Planta 197: 278–288

    Article  PubMed  CAS  Google Scholar 

  • Levina NN, Lew RR and Heath IB (1994) Cytoskeletal regulation of ion channel distribution in the tip-growing organism Saprolegniaferax. J Cell Sci 107: 127–134

    PubMed  CAS  Google Scholar 

  • Meske V and Hartmann E (1995) Reorganization of microfilaments in protonemal tip cells of the moss Ceratodon purpureus during the phototropic response. Protoplasma 188: 59–69

    Article  PubMed  CAS  Google Scholar 

  • Meske V, Ruppert V. and Hartmann E (1996) Structural basis of the red light induced repolarization of tip-growth in caulonema cells of Ceratodon purpureus. Protoplasma 192: 189–198

    Article  Google Scholar 

  • Miller DD, Lancelle SA and Hepler PK (1996) Actin microfilaments do not form a dense meshwork in Lilium longiflorum pollen tube tips. Protoplasma 195: 123–132

    Article  Google Scholar 

  • Miller DD, de Ruijter NC A, Bisseling T and Emons AMC (1999) The role of actin in root hair morphogenesis: Studies with lipochito-oligosaccharide as a growth stimulator and cytochalasin as an actin perturbing drug. Plant Cell 17: 141–154

    CAS  Google Scholar 

  • Pickett-Heaps JD (1975) Green Algae: Structure, Reproduction, and Evolution in Selected Genera. Sunderland: MA, Sinauer

    Google Scholar 

  • Quatrano RS, Brian L, Aldridge J and Schulz T (1991) Polar axis fixation in Fucus zygotes: components of the cytoskeleton and extracellular matrix. Development (S) 1:11–16

    CAS  Google Scholar 

  • Rosen E, Chen R and Masson PH (1999) Root gravitropism: A complex response to a simple stimulus? Trends Plant Sci 4: 407–412

    Article  PubMed  CAS  Google Scholar 

  • Sack FD (1991) Plant Gravity Sensing. Int Rev Cytol 127: 193–252.

    Article  PubMed  CAS  Google Scholar 

  • Sack FD (1997) Plastids and gravitropic sensing. Planta 203: S63-S68

    Article  PubMed  CAS  Google Scholar 

  • Sanders D, Brownlee C and Harper JF (1999) Communicating with calcium. Plant Cell 11: 691–706

    PubMed  CAS  Google Scholar 

  • Schröder (1904) Zur Statolithentheorie des Geotropismus. Beih Bot Centralbl 16: 269–288

    Google Scholar 

  • Schröter K, Läuchli A and Sievers A (1975) Mikroanalytische Identifikation von Bariumsulfat-Kristallen in den Statolithen von Charafragilis Desv. Planta 122: 213–225

    Article  Google Scholar 

  • Shaw SL and Quatrano RS (1996) Polar localization of a dihydropyridine receptor on living Fucus zygotes. J Cell Sci 109: 335–342

    PubMed  CAS  Google Scholar 

  • Sievers A (1971) Gravity receptors in lower plants. In: Gordon SA, Cohen MJ (eds) Gravity and the organism. Chicago: Univ Chicago Press, pp 51–63

    Google Scholar 

  • Sievers A and Schröter K (1971) Versuch einer Kausalanalyse der geotropischen Reaktionskette im Chara-Rhizoid. Planta 96: 339–353

    Article  Google Scholar 

  • Sievers A and Schnepf E (1981) Morphogenesis and polarity of tubular cells with tip growth. In: Kiermayer (ed) Cytomorphogenesis in Plants, Cell Biology Monographs, vol 8 Wien, New York: Springer Verlag, pp 265–299

    Chapter  Google Scholar 

  • Sievers A and Braun M (1996) Root cap: structure and function. In: Waisel Y, Eshel A and Kafkafi U (eds) Plant Roots — The Hidden Half (2nd edn). New York: Marcel Dekker, pp 31–49

    Google Scholar 

  • Sievers A, Heinemann B and Rodriguez-Garcia MI (1979) Nachweis des subapikalen differentiellen Flankenwachstums im Chara-Rhizoid während der Graviresponse. Z Pflanzenphysiol 91: 435–442

    CAS  Google Scholar 

  • Sievers A and Schmitz M (1982) Röntgen-Mikroanalyse von Barium, Schwefel und Strontium in Statolithen-Kompartimenten von Chara-Rhizoiden. Ber Dtsch Bot Ges 95: 353–360

    CAS  Google Scholar 

  • Sievers A, Kramer-Fischer M, Braun M and Buchen B (1991a) The polar organization of the growing Chara rhizoid and the transport of statoliths are actin-dependent. Bot Acta 104: 103–109

    PubMed  CAS  Google Scholar 

  • Sievers A, Buchen B, Volkmann D and Hejnowicz Z (1991b) Role of the cytoskeleton in gravity perception. In: Lloyd CW (ed) The Cytoskeletal Basis for Plant Growth and Form. London: Academic Press, pp 169–182

    Google Scholar 

  • Sievers A, Buchen B and Hodick D (1996) Gravity sensing in tip-growing cells. Trends Plant Sci 1:273–279

    Article  PubMed  CAS  Google Scholar 

  • Steer MW (1990) Role of actin in tip growth. In: Heath IB (ed) Tip Growth in Plant and Fungal Cells. San Diego: Academic Press, pp 110–145

    Google Scholar 

  • Taylor LT and Hepler PK (1997) Pollen germination and tube growth. Annu Rev Plant Physiol Plant Mol Biol. 48: 461–491

    Article  PubMed  CAS  Google Scholar 

  • Tewinkel M, Kruse S, Quader H, Volkmann D and Sievers A (1989) Visualization of actin filament pattern in plant cells without prefixation. A comparison of differently modified phallotoxins. Protoplasma 149: 178–182

    Article  Google Scholar 

  • Volkmann D, Buchen B, Hejnowicz Z, Tewinkel M and Sievers A (1991) Oriented movement of statoliths studied in a reduced gravitational field during parabolic flights of rockets. Planta 85: 153–161

    Google Scholar 

  • Walker LM and Sack FD (1995) Microfilament distribution in protonemata of the moss Ceratodon. Protoplasma 189: 229–237

    Article  PubMed  CAS  Google Scholar 

  • Wang-Cahill F and Kiss JZ (1995) The statolith compartment in Chara rhizoids contains carbohydrate and protein. Amer J Bot 83: 220–229

    Article  Google Scholar 

  • Wasteneys GO and Williamson RE (1991) Endoplasmic microtubules and nucleus-associated actin rings in Nitella internodal cells. Protoplasma 162: 86–98

    Article  Google Scholar 

  • Wasteneys GO, Collings DA, Gunning BES, Hepler PK and Menzel D (1996) Actin in living and fixed characean internodal cells: Identification of a cortical array of fine actin strands and chloroplast actin rings. Protoplasma 190: 25–38

    Article  CAS  Google Scholar 

  • Zacharias E (1890) Über Bildung und Wachstum der Zellhaut bei Chara foetida. Ber Dtsch Bot Ges 8: (56)–(59)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

C. J. Staiger F. Baluška D. Volkmann P. W. Barlow

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Braun, M., Wasteneys, G.O. (2000). Actin in Characean Rhizoids and Protonemata. In: Staiger, C.J., Baluška, F., Volkmann, D., Barlow, P.W. (eds) Actin: A Dynamic Framework for Multiple Plant Cell Functions. Developments in Plant and Soil Sciences, vol 89. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9460-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9460-8_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5504-0

  • Online ISBN: 978-94-015-9460-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics