Skip to main content

Heavy Metal Remediation of Wastewaters by Microbial Biotraps

  • Chapter
Bioremediation

Abstract

Industry, agriculture, sewage treatment and mining operations all combine to produce enormous amounts of metal (and other inorganic) ion contaminated wastewaters. Nuclear fuel cycle waste adds an additional and unique burden of radioactive metals. Unlike organic chemicals, metals persists in the environment indefinitely, posing threats to all living organisms which are exposed to them (Volesky and Holan, 1995). Control of such discharges has only been energetically regulated by governments in the past two or three decades. As a result, many toxic inorganics have accumulated in soils, sediments and impoundments throughout the world. Metal bearing wastewaters may be of known and predictable composition if derived from a single industry, e.g., electroplating wastewaters, or in other cases are a heterogeneous mix of many dissolved metal ions and organics at various pHs, with salts, colloidal and particulate matter present as well. The approach by many governmental regulators is now to prevent further deterioration of the environment by intercepting toxic metals before they are discharged. It is recognized that new, hopefully more cost-effective, technologies are needed to replace those borrowed primarily from the unit operations of the chemical industry which rely on a mixture of physical and chemical processes (Table I) to render the contaminants less toxic or more easily handled (Crusberg et al., 1994; Gretsky, 1994). Unfortunately, the form of the converted metal is itself often in need of careful and expensive disposal, and conventional treatment becomes less efficient and more expensive when metal ion concentrations fall in the 1–100 mg/l range. Table II provides a listing of discharge limits of metal finishing wastewaters in the U.S., and as such represent goals that must be met by any new technology or existing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Asheh, S. and Duvjnak, Z. (1995) Adsorption of copper and chromium by Aspergillus carbonari us, Biotechnol. Prog. 11, 638–642.

    Article  CAS  Google Scholar 

  • Anderson, G.L., Williams, J. and Hille, R. (1992) The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase, J. Biol. Chem. 267, 23674–23682.

    CAS  Google Scholar 

  • Ashkenazy, R., Gottlieb, L. and Yannai, S. (1997) Characterization of acetone-washed yeast biomass functional groups involved in lead biosorption, Biotechnol. Bioengrg. 55, 1–10.

    Article  CAS  Google Scholar 

  • Azab, M.S., Peterson, P.J. and Young, T.W.K. (1990) Uptake of cadmium by fungal biomass, Microbios 62, 23–28.

    CAS  Google Scholar 

  • Barnes, L.J., Janssen, F.J., Sherren, J.H., Versteegh, J.H., Koch, R.O. and Scheeren, P.J.H. (1991) A new process for the microbial removal of sulphate and heavy metals from contaminated waters extracted by a geohydrological control system, Trans. Inst. Chem. Engrg. 69, 184–186.

    CAS  Google Scholar 

  • Barnes, J.L., Scheeren, P.J.M. and Buisman, C.J.N. (1994) Microbial removal of heavy metals and sulfate from contaminated groundwaters, in J.L. Means and R.E. Hinchee (eds.), Emerging Technology for Bioremediation of Metals, Lewis Publishers, Boca Raton, Florida, pp. 38–49.

    Google Scholar 

  • Basnakova, G. and Macaskie, L.E. (1997) Microbially enhanced chemisorption of nickel into biologically synthesized hydrogen uranyl phosphate: A novel system for the removal and recovery of metals from aqueous solutions, Biotechnol. Bioengrg. 54, 319–328.

    Article  CAS  Google Scholar 

  • Beveridge, T.J., Hughes, M.N., Lee, H., Leung, K.T., Poole, R.K., Savvaidis, I., Silver, S., Trevors, J.T. (1997) Metal-microbe interactions: Contemporary approaches, in R.K. Poole (ed.), Advances in Microbial Physiology, Vol. 38, Academic Press, London, pp. 177–243.

    Google Scholar 

  • Birrer, G.A., Cromwick, A.M. and Gross, R.A. (1994) Gamma-poly(glutamic acid) formation by Bacillus licheniformis 9945a: Physiological and biochemical studies, Internat. J. Biol. Macromol. 16, 265–275.

    Article  CAS  Google Scholar 

  • Brombacher, C., Bachofen, R. and Brandl, H. (1997) Biohydrometallurgical processing of solids: A patent review, Appl. Microbiol. Biotechnol. 48, 577–587.

    Article  CAS  Google Scholar 

  • Brierley, C.L. (1990a) Bioremediation of metal-contaminated surface and groundwaters, Geomicrobiol. J. 8, 201–223.

    Article  CAS  Google Scholar 

  • Brierley, J.A. (1990b) Production and application of a Bacillus-based product for the use in metals biosorption, in B. Volesky (ed.), Biosorption of Heavy Metals, CRC, Boston, pp. 305–311.

    Google Scholar 

  • Brierley, C.L. and Brierley, J.A. (1993) Immobilization of biomass for industrial applications of biosorption, in A.E. Tonna, M.L. Apel and C.L. Brierley (eds.), Biohydrometallurgical Technologies, Vol. II, The Minerals, Metals and Materials Society, Warrendale, PA, pp. 35–44.

    Google Scholar 

  • Bustard, M. and McHale, A.P. (1997) Biosorption of uranium by cross-linked and alginate immobilized residual biomass from distillery spent wash, Bioprocess Engrg. 17, 127–130.

    Article  CAS  Google Scholar 

  • Bustard, M., Donnellan, N., Rollan, A. and McHale, A.P. (1997) Studies on the biosorption of uranium by a thermotolerant, ethanol producing strain of Kluyveromuces marxianus, Bioprocess Engrg. 17, 45–50.

    CAS  Google Scholar 

  • Cervantes, C., Ji., G., Ramirez, J.L. and Silver, S. (1994) Resistance to arsenic compounds in microorganisms, FEMS Microbiol. Rev. 15, 355–367.

    CAS  Google Scholar 

  • Crusberg, T.C., Gudmundsson, G., Moore, S.C., Weathers, P.J. and Biederman, R.R. (1994) Structural analysis of a fungal biotrap for removal of heavy metals from wastewaters, in P.N. Cheremisinoff and Y.C. Wu (eds.), Hazardous Waste Management Handbook: Technolog; Perception and Reality, PTR Prentice Hall, Englewood Cliffs, New Jersey, pp. 213–224.

    Google Scholar 

  • Cuero, R.G. (1996) Enhanced heavy metal immobilization by a bacterial-chitosan complex in soil, Biotechnol. Lett. 18, 511–514.

    Article  CAS  Google Scholar 

  • Dey, S., Rao, P.R.N., Bhattacharyya, B.C. and Bandyophadhyay, M. (1995) Sorption of heavy metals by four Basiodiomycetous fungi, Bioproc. Engrg. 12, 773–777.

    Google Scholar 

  • Erlich, H.L. and Brierley, C.L. (1990) Microbial Mineral Recovery, McGraw-Hill, New York. Farkas, V. (1980) Biosynthesis of cell walls of fungi, Microbiol. Rev. 43, 117.

    Google Scholar 

  • Figueira, M.M., Volesky, B. and Ciminelli, V.S.T. (1997) Assessment of interface in biosorption of a heavy metal, Biotechnol. Bioengrg. 54, 344–350.

    Article  CAS  Google Scholar 

  • Fourest, E. and Roux, J.C. (1992) Heavy metal biosorption by fungal mycleia byproducts: Mechanisms and influence of pH, Appl. Environ. Biotechnol. 37, 399–403.

    Article  CAS  Google Scholar 

  • Fujie, K., Hu, H.Y., Huange, X. and Tanaka, Y. (1996) Optimal operation of a bioreactor system for the treatment of chromate wastewater using Enterobacter cloacae HO1, Water Sci. Technol. 34, 173.

    CAS  Google Scholar 

  • Gadd, G.M. and White, C. (1993) Microbial treatment of metal pollution — A working biotechnology, Trends Biotechnol. 11, 353–359.

    Article  CAS  Google Scholar 

  • Ganesh, R., Robinson, K.G., Reed, G.D. and Sayler, G.S. (1997) Reduction of hexavalent uranium from organic complexes by sulfate- and iron-reducing bacteria, Appl. Environ. Microbiol. 63, 4385–4391.

    CAS  Google Scholar 

  • Geesey, G.G. and Jang, L. (1989) Interactions between metal ions and capsular polymers, in T.J. Beveridge and R.J. Doyle (eds.), Metals Ions and Bacteria, John Wiley and Sons, New York, pp. 325–357.

    Google Scholar 

  • Gharieb, M.M., Wilkonson, S.C. and Gadd, G.M. (1995) Reduction of selenium oxyanions by unicelluar, polymorphic and filamentious fungi: Cellular location of reduced selenium and implications for tolerance, J. Ind. Microbiol. 14, 300–311.

    Article  CAS  Google Scholar 

  • Gretsky, P.J. (1994) Selection of cost effective and environmental sound remedial alternatives based on risk assessment derived cleanup levels, in P.N. Cheremisinoff and Y.C. Wu (eds.), Hazardous Waste Management Handbook: Technology, Perception and Reality, PTR Prentice Hall, Englewood Cliffs, New Jersey, pp. 1–15.

    Google Scholar 

  • Griffin, D.H. (1994) Fungal Physiology, 2nd edition, Wiley-Liss, New York.

    Google Scholar 

  • Hartley, J., Cairney, J.W.G. and Meharg, A.A. (1997) Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment?, Plant and Soil 189, 303–319.

    Article  CAS  Google Scholar 

  • Herman, D.C., Artiola, J.F. and Miller, R.M. (1995) Removal of cadmium, lead and zinc from soil by a rhamnolipic biosurfactant, Environ. Sci. Technol. 29, 2280–2285.

    Article  CAS  Google Scholar 

  • Hu, M.Z.-C., Norman, J.M., Faison, B.D. and Reeves, M.E. (1996) Biosorption of uranium by Pseudomonas aeruginosa strain CSU: Characterization and comparison studies, Biotechnol. Bioengrg. 51, 237–247.

    Article  Google Scholar 

  • Hughes, M.N. and Poole, R.K. (1989) Metals and Micro-Organisms, Chapman and Hall, New York. Jennet, J.C. and Wixson, B.G. (1983) Geochemistry, mining and the environment, Minerals and the Environment 5, 39–53.

    Google Scholar 

  • Kapoor, A. and Viraraghavan, T. (1995) Fungal biosorption–An alternative treatment option for heavy metal bearing wastewaters: A review, Bioresource Technol. 53, 195–206.

    CAS  Google Scholar 

  • Kierans, M., Staines, A.M., Bennett, H. and Gadd, G.M. (1991) Silver tolerance and accumulation in yeasts, Biological Metals 4, 100–106.

    Article  CAS  Google Scholar 

  • Leuf, E., Prey, T. and Kubicek, C.P. (1991) Biosorption of zinc by fungal mycelia wastes, Appl. Microbiol. Biotechnol. 34, 688–692.

    Article  Google Scholar 

  • Lovley, D.R. and Phillips, E.J.P. (1992) Reduction of uranium by Desulfovibrio desulfuricans, Environ. Sci. Technol. 58, 850–856.

    CAS  Google Scholar 

  • Lovley, D.R., Phillips, E.J., Gorby, Y.A. and Landa, E.R. (1991) Microbial reduction of uranium, Nature 350, 413–416.

    Article  CAS  Google Scholar 

  • Lovley, D.R. Widman, P.K., Woodward, J.C. and Phillips, E.J.P. (1993) Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris, Appl. Environ. Microbiol. 59 3572–3576.

    Google Scholar 

  • Macaskie, L.E. (1991) The application of biotechnology to the treatment of wastes produced from the nuclear fuel cycle: Biodegradation and bioaccumulation as a means of treating radionuclide containing streams, Crit. Rev. Biotechnol. 11, 41–112.

    Article  CAS  Google Scholar 

  • Macaskie, L.E. and Basnakova, G. (1998) Microbially enhanced chemisorption of heavy metals: A method for the bioremediation of solutions containing long-lived isotopes of neptunium and plutonium, Environ. Sci. Technol. 32, 184.

    Article  CAS  Google Scholar 

  • Macaskie, L.E. and Dean, A.C.R. (1990) Metal sequestering biochemicals, in B. Volesky (ed.), Biosorption of Heavy Metals, CRC, Boston, pp. 19–248.

    Google Scholar 

  • Macaskie, L.E., Empson, R.M., Lin, F. and Tolley, M.R. (1995a) Enzymatically mediated uranium accumulation and uranium recovery using a Citrobacter sp immobilized as a biofilm within a plug-flow reactor, J. Chem. Technol. Biotechnol. 63, 1–16.

    Article  CAS  Google Scholar 

  • Macaskie, L.E., Hewitt, C.J., Shearer, J.A. and Kent, C.A. (1995b) Biomass production for the removal of heavy metals from aqueous solution at low pH using growth decoupled cells of Citrobacter sp., Internat. Biodeterioration and Biodegradation 35, 73–92.

    Article  CAS  Google Scholar 

  • Macaskie, L.E., Yong, P., Doyle, T.C., Roig, M.G., Diaz, M. and Manzano, T. (1997) Bioremediation of uranium-bearing wastewater: Biochemical and chemical factors influencing bioprocess application, Biotechnol. Bioengrg. 53, 100–109.

    Article  CAS  Google Scholar 

  • McLean, R.J., Beauchemin, D., Clapham, L. and Beveridge, T.J. (1990) Metal-binding characteristics of the gamma-glutamyl capsulor polymer of Bacillus licheniformis ATCC 9945, Appl. Environ. Microbiol. 56, 3671–3677.

    CAS  Google Scholar 

  • Misra, T.K. (1992a) Bacterial resistance to inorganic mercury salts and organomercurials, Plasmid 27, 4–16.

    Article  CAS  Google Scholar 

  • Misra, T.P. (1992b) Heavy metals, bacterial resistance, in Encyclopedia of Microbiology, Vol. 2, Academic Press, London, pp. 549–560.

    Google Scholar 

  • Morley, G.F. and Gadd, G.M. (1995) Sorption of toxic metals by fungi and clay materials, Mycol. Res. 99, 1428–1439.

    Article  Google Scholar 

  • Omar, N.B. and Merroun, M.T. (1996) Brewery yeast as a biosorbent for uranium, J. Appl. Bacteriol. 81, 283–287.

    Article  CAS  Google Scholar 

  • Oremland, R.S., Steinberg, N.A., Maest, A.S., Miller, L.G. and Hollibaugh, J.T. (1990) Measurement of in situ rates of selenate removal by dissimilatory bacterial reduction in sediments, Environ. Sci. Technol. 24, 1157–1164.

    Article  CAS  Google Scholar 

  • Puranik, P R, Chabukswar, N.S. and Paknikar, K.M. (1995) Cadmium biosorption by Streptomyces pimprina waste biomass, Appl. Microbiol. Biotechnol. 43, 1118–1121.

    Article  CAS  Google Scholar 

  • Rajagopalan, G., Robinson, K.G., Reed, G.D. and Saiyler, G.S. (1997) Reduction of hexavalent uranium from organic complexes by sulfate- and iron-reducing bacteria, Appl. Environ. Microbiol. 63, 4385–4391.

    Google Scholar 

  • Rudd, T., Sterritt, R.M. and Lester, J.N. (1984) Complexation of heavy metals by extracellular polymers in the activated sludge process, J Water Pol. Control Fed. 56, 1260.

    CAS  Google Scholar 

  • Sag, Y. and Kutsal, T. (1996) The selective biosorption of chromium(IV) and copper(II) ions from binary metal mixtures by R. arrhizus, Proc. Biochem. 31, 561–572.

    Article  CAS  Google Scholar 

  • Sayer, J.A. and Gadd, G.M. (1997) Solubilization and transformation of insoluble inorganic metal compounds to insoluble metal oxalates by Aspergillus niger., Mycology Res. 101, 653–661.

    Article  CAS  Google Scholar 

  • Schiewer, S. and Volesky, B. (1996) Modeling multi-ion exchange in biosorption, Environ. Sci. Technol. 30, 2921–2927.

    Article  CAS  Google Scholar 

  • Schiewer, S. and Volesky, B. (1997) Ionic strength and electrostatic effects in biosorption of divalent metal ions and proteins, Environ. Sci. Technol. 31, 2478–2485.

    Article  CAS  Google Scholar 

  • Scott, J.A. and Palmer, S.J. (1986) Microbial metal adsorption enhancement by naturally excreted polysaccharide coatings, in H. Eccles and S. Hunt (eds.), Immobilization of Ions by Biosorption, Ellis Horwood, Chichester, England, p. 81.

    Google Scholar 

  • Silver, A. (1992) Plasmid-determined metal resistance mechanisms: Range and overview, Plasmid 27, 1–3.

    Article  CAS  Google Scholar 

  • Silver, A. (1994) Exploiting heavy metal resistance systems in bioremediation, Res. Microbiol. 145, 39–81.

    Article  Google Scholar 

  • Singleton, I., Wainwright, M. and Edyvean, R.G.J. (1990) Some factors influencing the adsorption of particulates by fungal mycelium, Biorecovery 1, 271–289.

    CAS  Google Scholar 

  • Smith, L.A., Means, J.L., Chen, A., Alleman, B., Chapman, C.C., Tixier Jr., J.S., Brauning, S.E., Gavaskar, A.R. and Royer, M.D. (1995) Remedial Options for Metals-Contaminated Sites, CRC Lewis Publishers, New York.

    Google Scholar 

  • Troy, F.A. (1982) Chemistry and biosynthesis of the poly(gamma-D-glutamyl) capsule in Bacillus licheniformis, in H. Kleinkauf and H. von Dohren (eds.), Peptide Antibiotics Biosynthesis and Functions, Walter de Gruyter, New York, pp. 49–83.

    Google Scholar 

  • Tsezos, M. and Deutschmann, A.A. (1990) An investigation of engineering parameters for the use of

    Google Scholar 

  • immobilized biomass particles in biosorption, J. Chem. Technol. Biotechnol. 48 29–39.

    Google Scholar 

  • Turner, J.S. and Robinson, N.J. (1995) Cyanobacterial metallothioneins: Biochemistry and molecular genetics, J. Ind. Microbiol. 14, 119–125.

    Article  CAS  Google Scholar 

  • U.S.E.P.A. (1991) Remediation of contaminated sediments, Washington DC EPA/625/6–91/028. Veglio, F. and Beolchini, F. (1997) Removal of metals by biosorption: A review, Hydrometallurgy 44, 301–316.

    Article  Google Scholar 

  • Volesky, B. (1990) Removal and recovery of heavy metals by biosorption, in B. Volesky (ed.), Biosorption of Heavy Metals, CRC Press, Boston, pp. 7–43, 235–250.

    Google Scholar 

  • Volesky, B. and Holan, Z.R. (1995) Biosorption of heavy metals, Biotechnol. Prog. 11, 235–250. Volesky, B. and May-Phillips, H.A. (1995) Biosorption of heavy metals by Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol. 42, 807–811.

    Article  Google Scholar 

  • Volesky, B., May, H. and Holan, Z.R. (1993) Cadmium biosorption by Saccharomyces cerevisiae, Biotechnol. Bioengrg. 41, 826–829.

    Article  CAS  Google Scholar 

  • Wainwright, M.I., Singleton, I. and Edyvean, R.G.J. (1990) Magnetite adsorption as a means of making fungal biomass susceptible to a magnetic field, Biorecovery 2, 37–53.

    CAS  Google Scholar 

  • White, C. and Gadd, G.M. (1997) An internal sedimentation bioreactor for laboratory-scale removal of toxic metals from soil leachates using biogenic sulphide precipitation, J. Ind. Microbiol. 18, 414–421.

    Article  CAS  Google Scholar 

  • White, C., Wilkinson, S.C. and Gadd, G.M. (1995) The role of microorganisms in biosorption of

    Google Scholar 

  • toxic metals and radionuclides, Internat. Biodeterioration and Biodegradation 35, 17–40.

    Google Scholar 

  • Wilhelmi, B.S. and Duncan, J.R. (1995) Metal recovery from Saccharomyces cerevisiae biosorption columns, Biotechnol. Lett. 17, 1007–1012.

    Article  CAS  Google Scholar 

  • Wilhelmi, B.S. and Duncan, J.R. (1996) Reusability of immobilized Saccharomyces cerevisiae with successive copper adsorption-desorption cycles, Biotechnol. Lett. 18, 531–536.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Crusberg, T.C., Mark, S.S. (2000). Heavy Metal Remediation of Wastewaters by Microbial Biotraps. In: Valdes, J.J. (eds) Bioremediation. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9425-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9425-7_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5519-4

  • Online ISBN: 978-94-015-9425-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics