Skip to main content

Modulation of Plant Function and Plant Pathogens by Antibody Expression

  • Chapter
Book cover Metabolic Engineering of Plant Secondary Metabolism

Abstract

The expression of antibodies or antibody fragments in plants that bind to functional domains of plant or pathogen derived proteins, is a novel approach to elucidate and alter primary or secondary metabolism in plants and also to engineer pathogen resistance by inactivating targets inside the plant cell through immunomodulation. The feasibility of this approach either to interfere in plant metabolism or in plant pathogen infections has been shown for several antibodies that bind to key plant metabolites or to viral target proteins. Questions such as how cellular targeting alters the expression and accumulation of these proteins/molecules in plants remain to be answered before antibody technology can be used commercially. Alternatively, plants provide an excellent source for biomass production making it feasible to produce high amounts of valuable recombinant antibodies for diagnostic and therapeutic applications. This approach has yet to be evaluated in terms of expression levels, genetic stability in the field and downstream processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hiatt, A., Cafferkey, R. and Bowdish, K. Production of antibodies in transgenic plants. Nature 342, 76–78 (1989).

    Article  PubMed  CAS  Google Scholar 

  2. Conrad, U. and Fiedler, U. Expression of engineered antibodies in plant cells. Plant Mol Biol 26, 1023–30 (1994).

    Article  PubMed  CAS  Google Scholar 

  3. Conrad, U. and Fiedler, U. Compartment-specific accumulation of recombinant immunoglobulins in plant cells: an essential tool for antibody production and immunomodulation of physiological functions and pathogen activity. Plant Mol. Biol. 38, 101–109 (1998).

    Article  PubMed  CAS  Google Scholar 

  4. Conrad, U. et al. High level and stable accumulation of Single chain Fv antibodies in Plant Storage Organs. J. Plant Physiol. 152, 708–711 (1998).

    Article  CAS  Google Scholar 

  5. Owen, M. et al. Synthesis of a functional anti-phytochrome single-chain Fv protein in transgenic tobacco. Bio/Technology 10, 790–794 (1992).

    Article  PubMed  CAS  Google Scholar 

  6. Fecker, L.F. et al. Expression of single-chain antibody fragments (scFv) specific for beet necrotic yellow vein virus coat protein or 25kDa protein in Escherichia coli and Nicotiana benthamiana. Plant Mol. Biol. 32, 979–986 (1996).

    Article  CAS  Google Scholar 

  7. Tavladoraki, P. et al. Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature 366, 469–472 (1993).

    Article  PubMed  CAS  Google Scholar 

  8. Zimmermann, S. et al. Intracellular expression of TMV-specific single chain Fv fragments leads to improve virus resistance in Nicotiana tabacum. Molecular Breeding 4, 369–379 (1998).

    Article  CAS  Google Scholar 

  9. De Jaeger, G. et al. High level accumulation of single-chain variable fragments in the cytosol of transgenic Petunia hybrida. Eur. J. Biochem 259, 1–10 (1998).

    Google Scholar 

  10. Beachy, R.N. Mechanisms and applications of pathogen-derived resistance in transgenic plants. Curr. Opin. Biotechnol. 8, 215–220 (1997).

    Article  PubMed  CAS  Google Scholar 

  11. Baulcombe, D. Novel strategies for engineering virus resistance in plants. Curr. Opin. BioTechnol. 5, 117–124 (1994).

    Article  CAS  Google Scholar 

  12. Wilson, T. Strategies to protect crop plants against viruses: Pathogen-derived resistance blossoms. Proc. Natl. Acad. Sci. USA. 90, 3134–3141 (1993).

    Article  PubMed  CAS  Google Scholar 

  13. Kohler, G. and Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    Article  PubMed  CAS  Google Scholar 

  14. Clackson, T. et al. Making antibody fragments using phage display libraries. Nature 352, 624–628 (1991).

    Article  PubMed  CAS  Google Scholar 

  15. McCafferty, J. et al. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554 (1990).

    Article  PubMed  CAS  Google Scholar 

  16. Hoogenboom, H.R. et al. Building antibodies from their genes. Immunol Rev 130, 41–68 (1992).

    Article  PubMed  CAS  Google Scholar 

  17. Hoogenboom, H.R. and Winter, G. By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. J. Mol. Biol. 20, 381–388 (1992).

    Article  Google Scholar 

  18. Barbas, C.d. et al. Molecular profile of an antibody response to HIV-1 as probed by combinatorial libraries. J Mol Biol 230, 812–823 (1993).

    Article  PubMed  CAS  Google Scholar 

  19. Hawkins, R.E., Russell, S.J. and Winter, G. Selection of phage antibodies by binding affinity. Mimicking affinity maturation. J. Mol. Biol. 226, 889–896 (1992).

    Article  PubMed  CAS  Google Scholar 

  20. Hoogenboom, H.R. Designing and optimising library selection strategies for generating high-affinity antibodies. TIBTECH 15, 62–70 (1997).

    Article  CAS  Google Scholar 

  21. Schier, R. et al. Identification of functional and structural amino-acid residues by parsimonious mutagenesis. Gene 169, 147–155 (1996).

    Article  PubMed  CAS  Google Scholar 

  22. Winter, G. et al. Making antibodies by phage display technology. Annu Rev Immunol 12, 433–455 (1994).

    Article  PubMed  CAS  Google Scholar 

  23. Haas, C. et al. Bispecific antibodies increase T-cell stimulatory capacity in vitro of human autologous virus-modified tumor vaccine. Clin Cancer Res 4, 721–730 (1998).

    PubMed  CAS  Google Scholar 

  24. Link, B.K. et al. Anti-CD3-based bispecific antibody designed for therapy of human B-cell malignancy can induce T-cell activation by antigen-dependent and antigen-independent mechanisms. Int J Cancer 77, 251–256 (1998).

    Article  PubMed  CAS  Google Scholar 

  25. Karpovsky, B. et al. Production of target-specific effector cells using hetero-cross-linked aggregates containing anti-target cell and anti-Fc gamma receptor antibodies. J Exp Med 160, 1686–1701 (1984).

    Article  PubMed  CAS  Google Scholar 

  26. Brennan, M., Davison, P.F. and Paulus, H. Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin G1 fragments. Science 229, 81–83 (1985).

    Article  PubMed  CAS  Google Scholar 

  27. Glennie, M.J. et al. Preparation and performance of bispecific F(ab’ gamma)2 antibody containing thioether-linked Fab’ gamma fragments. J Immunol 139, 2367–2375 (1987).

    PubMed  CAS  Google Scholar 

  28. Carter, P. et al. High level Escherichia coli expression and production of a bivalent humanized antibody fragment. Biotechnology (N Y) 10, 163–167 (1992).

    Article  CAS  Google Scholar 

  29. Kostelny, S.A., Cole, M.S. and Tso, J.Y. Formation of a bi specific antibody by the use of leucine zippers. J Immunol 148, 1547–1553 (1992).

    PubMed  CAS  Google Scholar 

  30. Milstein, C. and Cuello, A.C. Hybrid hybridomas and their use in immunohistochemistry. Nature 305, 537–540 (1983).

    Article  PubMed  CAS  Google Scholar 

  31. Holliger, P., Prospero, T. and Winter, G. “Diabodies”: small bivalent and bispecific antibody fragments. Proc Natl Acad Sci USA 90, 6444–6448 (1993).

    Google Scholar 

  32. Mallender, W.D. and Voss, E.W., Jr. Construction, expression, and activity of a bivalent bispecific single-chain antibody. J Biol Chem 269, 199–206 (1994).

    PubMed  CAS  Google Scholar 

  33. Gruber, M. et al. Efficient tumor cell lysis mediated by a bispecific single chain antibody expressed in Escherichia coli. J Immunol 152, 5368–5374 (1994).

    CAS  Google Scholar 

  34. Kurucz, I. et al. Retargeting of CTL by an efficiently refolded bispecific single-chain Fv dimer produced in bacteria. J Immunol 154, 4576–4582 (1995).

    PubMed  CAS  Google Scholar 

  35. De Jonge, J. et al. Production and characterization of bispecific single-chain antibody fragments. Mol Immunol 32, 1405–1412 (1995).

    Article  PubMed  Google Scholar 

  36. Mack, M., Riethmuller, G. and Kufer, P. A small bispecific antibody construct expressed as a functional single-chain molecule with high tumor cell cytotoxicity. Proc Natl Acad Sci U S A 92, 7021–7025 (1995).

    Article  PubMed  CAS  Google Scholar 

  37. Mack, M. et al. Biologic properties of a bispecific single-chain antibody directed against 17–1A (EpCAM) and CD3: tumor cell-dependent T cell stimulation and cytotoxic activity. J Immunol 158, 3965–3970 (1997).

    PubMed  CAS  Google Scholar 

  38. Bowden, G.A., Paredes, A.M. and Georgiou, G. Structure and morphology of protein inclusion bodies in Escherichia coli. Biotechnology (N Y) 9, 725–730 (1991).

    Article  CAS  Google Scholar 

  39. Buchner, J. and Rudolph, R. Renaturation, purification and characterization of recombinant Fab-fragments produced in Escherichia coli. Biotechnology (N Y) 9, 157–162 (1991).

    Article  CAS  Google Scholar 

  40. Pastan, I., Chaudhary, V. and FitzGerald, D. Recombinant toxins as novel therapeutic agents. Annu Rev Biochem 61, 331–354 (1992).

    Article  PubMed  CAS  Google Scholar 

  41. Reiter, Y. and Pastan, I. Recombinant Fv immunotoxins and Fv fragments as novel agents for cancer therapy and diagnosis. Trends Biotechnol 16, 513–520 (1998).

    Article  PubMed  CAS  Google Scholar 

  42. Phillips, J. et al. Seed-specific immunomodulation of abscisic acid activity induces a developmental switch. Embo J 16, 4489–4496 (1997).

    Article  PubMed  CAS  Google Scholar 

  43. Artsaenko, O. et al. Expression of a single-chain Fv antibody against abscisic acid creates a wilty phenotype in transgenic tobacco. The Plant J. 8, 745–750 (1995).

    Article  CAS  Google Scholar 

  44. Bird, R.E. et al. Single-chain antigen-binding proteins [published erratum appears in Science 1989 Apr 28;244(4903):409]. Science 242, 423–426 (1988).

    Article  PubMed  CAS  Google Scholar 

  45. Biocca, S. et al. Redox state of single chain Fv fragments targeted to the endoplasmic reticulum, cytosol and mitochondria. Biotechnology (N Y) 13, 1110–5 (1995).

    Article  CAS  Google Scholar 

  46. Schouten, A. et al. The C-terminal KDEL sequence increases the expression level of a single-chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco. Plant Mol Biol 30, 781–793 (1996).

    Article  PubMed  CAS  Google Scholar 

  47. Schouten, A. et al. Improving scFv antibody expression levels in the plant cytosol. FEBS Lett 415, 235–241 (1997).

    Article  PubMed  CAS  Google Scholar 

  48. Mains, C.V. et al. An Escherichia coli vector to express and purify foreign proteins by fusion to and separation from maltose-binding protein. Gene 74, 365–373 (1988).

    Article  Google Scholar 

  49. LaVallie, E.R. et al. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology (N Y) 11, 187–193 (1993).

    Article  CAS  Google Scholar 

  50. Smith, D.B. and Johnson, K.S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67, 31–40 (1988).

    Article  PubMed  CAS  Google Scholar 

  51. Potrykus, I. Gene transfer to plants: assessment of published approaches and results. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 205–225 (1991).

    Article  CAS  Google Scholar 

  52. Ma, J. and Hein, M. Immunotherapeutic potential of antibodies produced in plants. TIBTECH. 13, 522–527 (1995).

    Article  CAS  Google Scholar 

  53. Ma, J. and Hein, M. Plant antibodies for Immunotherapy. Plant Physiol. 109, 341–346 (1995).

    Article  PubMed  CAS  Google Scholar 

  54. Whitelam, G.C. and Cockburn, W. Antibody expression in transgenic plants. Trends in Plant Science 1, 268–271 (1996).

    Article  Google Scholar 

  55. Whitelam, G.C. et al. Heterologous protein production in transgenic plants. Biotechnol Genet Eng Rev 11, 1–29 (1993).

    PubMed  CAS  Google Scholar 

  56. Whitelam, G.C., Cockburn, W. and Owen, M.R. Antibody production in transgenic plants. Biochem Soc Trans 22, 940–944 (1994).

    PubMed  CAS  Google Scholar 

  57. Koncz, C. and Schell, J. The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol.Gen.Genet. 204, 383–396 (1986).

    Article  CAS  Google Scholar 

  58. Horsch, R.B. et al. A simple and general method for transferring genes into plants. Science 227, 1229–1231 (1985).

    Article  CAS  Google Scholar 

  59. Christou, P. Particle gun-mediated transformation. Curr. Opin. Biotechnol. 4, 135–141 (1993).

    Article  CAS  Google Scholar 

  60. Lindsey, K. and Jones, M.G.K. Transient Gene Expression in Electroporated Protoplasts and Intact Cells of Sugar Beet. Plant Mol. Biol. 10, 43–52 (1987).

    Article  CAS  Google Scholar 

  61. Porta, C. and Lomonossoff, G.P. Use of viral replicons for the expression of genes in plants. Mol. Biotech. 5, 209–221 (1996).

    Article  CAS  Google Scholar 

  62. An, G. High efficiency transformation of cultured tobacco cells. Plant Physiol. 79, 568–570 (1985).

    Article  PubMed  CAS  Google Scholar 

  63. Kapila, J. et al. An Agrobacterium mediated transient gene expression system for intact leaves. Plant Sci. 122, 101–108 (1996).

    Article  Google Scholar 

  64. Scholthof, H., Scholthof, K. and Jackson, A. Plant virus gene vectors for transient expression of foreign proteins in plants. Annu. Rev. Phytopathol. 34, 299–323 (1996).

    Article  PubMed  CAS  Google Scholar 

  65. Hiatt, A.C. Production of monoclonal antibody in plants. Transplant Proc 23, 147–151, discussion 151 (1991).

    Google Scholar 

  66. Hiatt, A. and Ma, J.K. Characterization and applications of antibodies produced in plants. Im Rev Immunol 10, 139–152 (1993).

    Article  CAS  Google Scholar 

  67. Hiatt, A., Tang, Y., Weiser, W. and Hein, M.B. Assembly of antibodies and mutagenized variants in transgenic plants and plant cell cultures. Genet Eng 14, 49–64 (1992).

    Article  CAS  Google Scholar 

  68. Hiatt, A. Antibodies produced in plants. Nature 344, 469–470 (1990).

    Article  PubMed  CAS  Google Scholar 

  69. Larrick, J.W. et al. Production of antibodies in transgenic plants. Res Immunol 149, 603–608 (1998).

    Article  PubMed  CAS  Google Scholar 

  70. Kusnadi, A.R., Nikolov, Z.L. and Howard, J.A. Production of recombinant proteins in transgenic plants: Practical Considerations. Biotechnology and Bioengineering 56, 473–484 (1997).

    Article  PubMed  CAS  Google Scholar 

  71. During, K. et al. Synthesis and self-assembly of a functional monoclonal antibody in transgenic Nicotiana tabacum. Plant Mol. Biol. 15, 281–293 (1990).

    Article  PubMed  CAS  Google Scholar 

  72. Baum, T.J. et al. Expression in tobacco of a functional monoclonal antibody specific to stylet secretions of the root-knot nematode. MPMI 9, 382–387 (1996).

    Article  CAS  Google Scholar 

  73. De Wilde, C. et al. Intact antigen-binding MAK33 antibody and Fab fragment accumulate in intercellular spaces of Arabidopsis thaliana. Plant Science 114, 231–241 (1996).

    Google Scholar 

  74. Ma, J.K.C. et al. Assembly of monoclonal antibodies with IgGI and IgA heavy chain domains in transgenic tobacco plants. Eur. J. Immunol. 24, 131–138 (1994).

    Article  PubMed  CAS  Google Scholar 

  75. Voss, A. et al. Reduced virus infectivity in N. tabacum secreting a TMV-specific full-size antibody. Mol. Breeding 1, 39–50 (1995).

    CAS  Google Scholar 

  76. Ma, J.K. et al. Generation and assembly of secretory antibodies in plants. Science 268, 716–719 (1995).

    Article  PubMed  CAS  Google Scholar 

  77. De Neve, M. et al. Assembly of an antibody and its derived antibody fragments in Nicotiana and Arabidopsis. Transgenic Res. 2, 227–237 (1993).

    Article  PubMed  Google Scholar 

  78. Schouten, A. et al. The C-terminal KDEL sequence increases the expression level of a single-chain antibody designed to be targeted to both cytosol and the secretory pathway in transgenic tobacco. Plant Mol. Biol. 30, 781–793 (1996).

    Article  PubMed  CAS  Google Scholar 

  79. Firek, S. et al. Secretion of a functional single-chain Fv protein in transgenic tobacco plants and cell suspension cultures. Plant Mol Biol 23, 861–870 (1993).

    Article  PubMed  CAS  Google Scholar 

  80. Fiedler, U. and Conrad, U. High-level production and long-term storage of engineered antibodies in transgenic tobacco seeds. Bio/Technology 13, 1090–1093 (1995).

    Article  PubMed  CAS  Google Scholar 

  81. van Engelen, F.A. et al. Coordinate expression of antibody subunit genes yields high levels of functional antibodies in roots of transgenic tobacco. Plant Mol. Biol. 26, 1701–1710 (1994).

    Article  PubMed  Google Scholar 

  82. Hiatt, A. and Mostov, K. Assembly of multimeric proteins in plant cells: characteristics and uses of plant-derived antibodies. in Transgenic Plants: Fundamentals and Applications (ed. Hiatt, A. ) 221–236 ( Marcel Dekker Inc., New York, 1992 ).

    Google Scholar 

  83. Hood, E. et al. Commercial production of avidin from transgenic maize: characterization of transformant, production, processing, extraction and purification Mol. Breeding 3, 291–306 (1997).

    Article  CAS  Google Scholar 

  84. Artsaenko, O. et al. Potato tubers as a biofactory for recombinant antibodies. Mol. Breeding 4, 313–319 (1998).

    Article  CAS  Google Scholar 

  85. Fiedler, U. et al. Optimisation of scFv antibody production in transgenic plants. Immunotechnology 3, 205–216 (1997).

    Article  PubMed  CAS  Google Scholar 

  86. Gallie, D. Controlling gene expression in transgenics. Curr. Opin. Plant Biol. 1, 166–172 (1998).

    Article  PubMed  CAS  Google Scholar 

  87. Gallie, D.R. Posttranscriptional regulation of gene expression in plants. Annu.Rev.Plant Physiol.Plant Mol.Biol. 44, 77–105 (1993).

    Article  CAS  Google Scholar 

  88. Falk, B. and Bruening, G. Will transgenic crops generate new viruses and new diseases? Science 263, 1395–1396 (1994).

    Article  PubMed  CAS  Google Scholar 

  89. Duan, L. et al. Potent inhibition of human immunodeficiency virus type 1 replication by an intracellular anti-Rev single-chain antibody. Proc Natl Acad Sci USA 91, 5075–5079 (1994).

    Article  PubMed  CAS  Google Scholar 

  90. Marasco, W.A., Haseltine, W.A. and Chen, S.Y. Design, intracellular expression, and activity of a human anti-human immunodeficiency virus type 1 gp120 single-chain antibody. Proc Natl Acad Sci USA 90, 7889–7893 (1993).

    Article  PubMed  CAS  Google Scholar 

  91. Chen, S.Y. et al. Combined intra-and extracellular immunization against human immunodeficiency virus type 1 infection with a human anti-gp120 antibody. Proc Natl Acad Sci USA 91, 5932–5936 (1994).

    Article  PubMed  CAS  Google Scholar 

  92. Gargano, N. and Cattaneo, A. Inhibition of murine leukaemia virus retrotranscription by the intracellular expression of a phage-derived anti-reverse transcriptase antibody fragment. J Gen Virol 78, 2591–2599 (1997).

    PubMed  CAS  Google Scholar 

  93. Schlatmann, J.E. et al. Scaleup of Ajmalicine Production By Plant Cell Cultures of Catharanthus-roseus. Biotechnology and Bioengineering 41, 253–262 (1993).

    Article  PubMed  CAS  Google Scholar 

  94. Schiel, O. and Berlin, J. Large Scale Fermentation and Alkaloid Production of Cell Suspension Cultures of Catharanthus-roseus. Plant Cell Tissue and Organ Culture 8, 153–162 (1987).

    Article  CAS  Google Scholar 

  95. Noble, R.L. The discovery of the vina alkaloids—chemotherapeutic agents against cancer. Biochem Cell Biol 68, 1344–1351 (1990).

    Article  PubMed  CAS  Google Scholar 

  96. Mason, H.S. and Arntzen, C.J. Transgenic plants as vaccine production systems. Trends Biotechnol 13, 388–392 (1995).

    Article  PubMed  CAS  Google Scholar 

  97. Zeitlin, L. et al. A humanized monoclonal antibody produced in transgenic plants for immunoprotection of the vagina against genital herpes. Nat Biotechnol 16, 1361–1364 (1998).

    Article  PubMed  CAS  Google Scholar 

  98. Holliger, P. and Winter, G. Engineering bispecific antibodies. Curr Opin Biotechnol 4, 446–449 (1993).

    Article  PubMed  CAS  Google Scholar 

  99. Winter, G. and Milstein, C. Man-made antibodies. Nature 349, 293–299 (1991).

    Article  PubMed  CAS  Google Scholar 

  100. Pluckthun, A. Antibody engineering. Curr Opin Biotechnol 2, 238–246 (1991).

    Article  PubMed  CAS  Google Scholar 

  101. Faye, L. et al. Structure, biosynthesis, and function of asparagine-linked glycans on plant glycoproteins. Physiol. Plantarum 75, 309–314. (1989).

    Article  CAS  Google Scholar 

  102. Kaushal, G.P. and Elbein, A.D. Glycoprotein processing enzymes of plants. Methods Enzymol 179, 452–475 (1989).

    Article  PubMed  CAS  Google Scholar 

  103. Baker, D. and Harkonen, W. Regulatory agency concerns in the manufacturing and testing of monoclonal antibodies for therapeutic use. Targeted Diagn. Then 3, 75–98 (1990).

    CAS  Google Scholar 

  104. Fischer, R. et al. Transgenic plants as bioreactors for the expression of recombinant antibodies. in Proceedings of the Xth International Congress of Immunology (ed. Talwar, N. ) 307–313 ( Monduzzi Editore Publishers, Bologna, 1998 ).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fischer, R., Drossard, J., Schillberg, S., Artsaenko, O., Emans, N., Naehring, J.M. (2000). Modulation of Plant Function and Plant Pathogens by Antibody Expression. In: Verpoorte, R., Alfermann, A.W. (eds) Metabolic Engineering of Plant Secondary Metabolism. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9423-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9423-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5475-3

  • Online ISBN: 978-94-015-9423-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics