Skip to main content

Modification of Plant Secondary Metabolism by Genetic Engineering

  • Chapter
Metabolic Engineering of Plant Secondary Metabolism

Abstract

Plants have evolved a complex secondary metabolism for the production of an enormous range of secondary metabolites which comprises three major classes of natural products — the phenylpropanoids, isoprenoids and alkaloids. Many of these fulfil important functions in the plant’s interaction with the environment and were used from human as drugs, colour pigments and fragrances. During the past years, considerable progress has been made in identifying the genes underlying their synthesis and understanding how their synthesis is regulated. Elaborate gene transfer tools have been developed and are applicable for a wide range of plants. Therefore, genetic engineering approaches for the manipulation of plant secondary metabolism are now feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tietjen KG, Hunkler D, and Matern U. Differential response of cultured parsley cells to elicitors from two non-pathogenic strains of fungi 1. Identification of induced products as coumarin derivatives. Eur.J.Biochem. 1983; 131: 401–407.

    Article  PubMed  CAS  Google Scholar 

  2. Ebel J. Phytoalexin synthesis: The biochemical analysis of the induction process. Ann.Rev.Phytopath. 1986; 24: 235–264.

    Article  CAS  Google Scholar 

  3. Langcake P. Disease resistance of Vitis spp. and the production of the stress metabolite resveratrol, e-viniferin, cs-viniferin and pterostilbene. Physiol.Plant Pathology 1981; 18: 213–226.

    CAS  Google Scholar 

  4. Matern U and Grimmig B. Natural phenols as stress metabolites. In: Acta Horticulturae–International Symposium on Natural Phenols in Plant Resistance. Geibel M, Treutter D, and Feucht W, Sellier Druck GmbH, Freising,Germany 1994, 448–462.

    Google Scholar 

  5. Atanassova R, Favet N, Martz F, et al. Altered lignin composition in transgenic tobacco expressing 0-methyltranferase sequences in sense and antisense orientation. The Plant Journal 1995; 8: 465–477.

    Article  CAS  Google Scholar 

  6. Zhong R, Iii WH, Negrel J, et al. Dual methylation pathways in lignin biosynthesis. Plant Cell 1998; 10: 2033–2046.

    PubMed  CAS  Google Scholar 

  7. Fischer R and Hain R. Plant disease resistance resulting from the expression of foreign phytoalexins. Current Opinion in Biotechnology 1994; 5: 125–130.

    Article  CAS  Google Scholar 

  8. Hain R, Reif HJ, Langebartels R, et al. Foreign phytoalexin expression in plants results in increased disease resistance. In: Brighton Crop Protection Conferernce–Pests and Diseases. 1992, 757–766.

    Google Scholar 

  9. Lanz T, Schröder G, and Schröder J. Differential regulation of genes for resveratrol synthase in cell cultures of Arachis hypogaea L. Planta 1990; 181: 169–175.

    Article  CAS  Google Scholar 

  10. Wiese W, Vornam B, Krause E, et al. Structural organization and differential expression of three stilbene synthase genes located on a 13 kb grapevine DNA fragment. Plant Mol.Biol. 1994; 26: 667–677.

    Article  PubMed  CAS  Google Scholar 

  11. Schröder G, Brown JWS, and Schröder J. Molecular analysis of resveratrol synthase: cDNA, genomic clones and relationship with chalcone synthase. Eur.J.Biochem. 1988; 172: 161–169.

    Article  PubMed  Google Scholar 

  12. Schwekendiek A, Pfeffer G, and Kindl H. Pine stilbene synthase cDNA, a tool for probing environmental stress. FEBS Lett. 1992; 301: 41–44.

    Article  PubMed  CAS  Google Scholar 

  13. Schöppner A and Kindl H. Stilbene synthase (pinosylvine synthase) and its induction by ultraviolet light. FEBS Lett. 1979; 108: 349–352.

    Article  Google Scholar 

  14. Melchior F and Kindl H. Grapevine stilbene synthase cDNA only slightly differing from chalcone synthase cDNA is expressed in Escherichia coli into a catalytically active enzyme. FEBS Lett 1990; 268: 17–20.

    Article  PubMed  CAS  Google Scholar 

  15. Kangasjärvi J, Talvinen J, Utriainen M, et al. Plant defence systems induced by ozone. Plant Cell & Environment 1994; 17: 783–794.

    Article  Google Scholar 

  16. Grimmig B, Schubert R, Fischer R, et al. Ozone-and ethylene-induced regulation of a grapevine resveratrol synthase promoter in transgenic tobacco. Acta Physiologiae Plantarum 1997; 19: 467–474.

    Article  CAS  Google Scholar 

  17. Hain R, Bieseler B, Kindl H, et al. Expression of a stilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol. Plant Mol.Biol. 1990; 15: 325–335.

    Article  PubMed  CAS  Google Scholar 

  18. Ingham JL. 3,5,4’-Trihydroxystilbene as a phytoalexin from groundnut (Arachis hypogaea). Phytochemistry 1976;15:1791–1793.

    Google Scholar 

  19. Langcake P and Pryce RJ. The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol. Plant Path. 1976; 9: 77–86.

    Article  CAS  Google Scholar 

  20. Kay R, Chan A, Daly M, et al. Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 1987; 236: 1299–1302.

    Article  PubMed  CAS  Google Scholar 

  21. Odell JT, Nagy F, and Chua NH. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 1985; 313: 810–812.

    Article  PubMed  CAS  Google Scholar 

  22. Gluzman Y and Shenk T. Enhancers and eucaryotic gene expression. In: Current Communication in Molecular Biology, Cold Spring Harbor, New York 1983, Pages.

    Google Scholar 

  23. Khoury G and Gruss P. Enhancer elements. Cell 1983; 33: 313–314.

    Article  PubMed  CAS  Google Scholar 

  24. Hayashi H, Czaja I, Lubenow H, et al. Activation of a plant gene by T-DNA tagging: auxin-independent growth in vitro. Science 1992; 258: 1350–1353.

    Article  PubMed  CAS  Google Scholar 

  25. Fang RX, Nagy F, Sivasubramaniam S, et al. Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants. Plant Cell 1989; 1: 141–150.

    PubMed  CAS  Google Scholar 

  26. Thomzik JE, Stenzel K, Stocker R, et al. Synthesis of a grapevine phytoalexin in transgenic tomatoes (Lycopersicon esculentum Mill.) conditions resistance against Phytophthora infestans. Physiol.Mol.Plant Pathol. 1997; 51: 265–278.

    Article  CAS  Google Scholar 

  27. Stark-Lorenzen P, Nelke B, Hanssler G, et al. Transfer of a grapevine stilbene synthase gene to rice (Oryza sativa L.). Plant Cell Reports 1997; 16: 668–673.

    Article  CAS  Google Scholar 

  28. Leckband G and Lörz H. Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theoret Appl Genet 1998;:1004–1012.

    Google Scholar 

  29. Coutos-Thevenot P, Mauro MC, Breda C, et al.. in VII. Symposium international sur la genetique et l’amelioration de la vigne. 1998. Montpellier (France).

    Google Scholar 

  30. Fischer R, Budde I, and Hain R. Stilbene synthase gene expression causes changes in flower colour and male sterility in tobacco. Plant Journal 1997; 11: 489–498.

    Article  CAS  Google Scholar 

  31. Teuschel U and Hain R. In prep..

    Google Scholar 

  32. Nacken WK, Huijser P, Beltran JP, et al. Molecular characterization of two stamen-specific genes, tapi and fill, that are expressed in the wild type, but not in the deficiens mutant of Antirrhinum majus. Mol Gen Genet 1991; 229: 129–136.

    Article  PubMed  CAS  Google Scholar 

  33. Mariani C, Gossele V, De Beuckeleer M, et al. A chimaeric ribonuclease-inhibitor gene restores fertility to male sterile plants. Nature 1992; 357: 384–387.

    Article  CAS  Google Scholar 

  34. Napoli C, Lemieux C, and Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 1990; 2: 279–290.

    PubMed  CAS  Google Scholar 

  35. van der Krol AR, Lenting PJ, Veenstra JG, et al. Nature 1988; 333: 866.

    Article  Google Scholar 

  36. Van Der Meer IM, Stam ME, Van Tunen AJ, et al. Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility. Plant Cell 1992; 4: 253–262.

    PubMed  Google Scholar 

  37. Vedel F, Pla M, Vitart V, et al. Molecular basis of nuclear and cytoplasmic male sterility in higher plants. Plant Physiol.Biochem. 1994; 32: 601–618.

    CAS  Google Scholar 

  38. Forkmann G. Flavonoids as flower pigments the formation of the natural spectrum and its extension by genetic engineering. Plant Breeding 1991; 106: 1–26.

    Article  CAS  Google Scholar 

  39. Forkmann G. Control of pigmentation in natural and transgenic plants. Current Opinion in Biotechnology 1993; 4: 159–165.

    Article  CAS  Google Scholar 

  40. Lam E, Benfey PN, Gilmartin PM, et al. Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants. Proc Natl Acad Sci U S A 1989; 86: 7890–7894.

    Article  PubMed  CAS  Google Scholar 

  41. Xiang C, Miao ZH, and Lam E. Coordinated activation of as-1-type elements and a tobacco glutathione S-transferase gene by auxins, salicylic acid, methyl-jasmonate and hydrogen peroxide. Plant Mol Biol 1996; 32: 415–426.

    Article  PubMed  CAS  Google Scholar 

  42. Lam E and Lam Y, K P. Binding site requirements and differential representation of TGA factors in nuclear ASF-1 activity. Nucleic Acids Res. 1995; 23: 3778–3785.

    Article  PubMed  CAS  Google Scholar 

  43. Strompen G, Gruner R, and Pfitzner UM. An as- /-like motif controls the level of expression of the gene for the pathogenesis-related protein la from tobacco. Plant Mol Biol 1998; 37: 871–883.

    Article  PubMed  CAS  Google Scholar 

  44. Hain R and Fischer R. unpublished.

    Google Scholar 

  45. Neuhaus G, Neuhaus-Ur G, Katagiri F, et al. Tissue-specific expression of as-1 in transgenic tobacco. Plant Cell 1994; 6: 827–834.

    PubMed  CAS  Google Scholar 

  46. Middleton E, Jr. Effect of plant flavonoids on immune and inflammatory cell function. Adv Exp Med Biol 1998; 439: 175–182.

    Article  PubMed  CAS  Google Scholar 

  47. Soleas Gj, Diamandis Ep, and Goldberg Dm. Resveratrol–a molecule whose time has come–and gone. Clinical Biochemistry 1997; 30: 91–113.

    Article  Google Scholar 

  48. Dixon RA, Lamb CJ, Masoud S, et al. Metabolic engineering: prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defense responses-a review. Gene 1996; 179: 61–71.

    Article  PubMed  CAS  Google Scholar 

  49. Hahn MG, Bucheli P, Cervone F, et al. The roles of cell wall constituents in plant-pathogen interactions. In: Plant-Microbe Interactions, Volume 3. Nester E and Kosuge T, Macmillan Press, New York 1989, 131–181.

    Google Scholar 

  50. Schultz TP, Hubbard TF, Le Long J, et al. Role of stilbenes in the natural durability of wood: fungicidal structure-activity relationships. Phytochemistry 1990; 29: 1501–1507.

    Article  CAS  Google Scholar 

  51. Pont V and Pezet R. Relation between the chemical structure and the biological activity of hydroxystilbenes against Botrytis cinerea. Journal of Phytopathology 1990; 130: 1–8.

    Article  CAS  Google Scholar 

  52. Gehlert R, Schöppner A, and Kindl H. Stilbene synthase from seedlings of Pinus sylvestris purification and induction in response to fungal infection. Molecular Plant Microbe Interactions 1990; 3: 444–449.

    Article  CAS  Google Scholar 

  53. Paiva NL, Edwards R, Sun YJ, et al. Stress responses in alfalfa (Medicago sativa L.) 11. Molecular cloning and expression of alfalfa isoflavone reductase, a key enzyme of isoflavonoid phytoalexin biosynthesis. Plant Mol Biol 1991; 17: 653–667.

    Article  PubMed  CAS  Google Scholar 

  54. Daniel S, Tiemann K, Wittkampf U, et al. Elicitor-induced metabolic changes in cell cultures of chickpea Cicer arietinum L. cultivars resistant and susceptible to Ascochyta rabiei I. investigations of enzyme activities involved in isoflavone and pterocarpan phytoalexin biosynthesis. Planta 1990; 182: 270–278.

    Article  CAS  Google Scholar 

  55. Sun Y, Wu Q, Van Etten HD, et al. Stereoisomerism in plant disease resistance induction and isolation of the 7,2’-dihydroxy-4’-5’-methylenedioxyisoflavone oxidoreductase an enzyme introducing chirality during synthesis of isoflavonoid phytoalexins in pea Pisum sativum L. Archives of Biochemistry & Biophysics 1991; 284: 167–173.

    Article  CAS  Google Scholar 

  56. Delserone LM, Matthews DE, and Van Etten HD. Differential toxicity of enantiomers of maackiain and pisatin to phytopathogenic fungi. Phytochemistry 1992; 31: 3813–3819.

    Article  CAS  Google Scholar 

  57. Tiemann K, Inze D, Van Montagu M, et al. Pterocarpan phytoalexin biosynthesis in elicitor-challenged chickpea (Cicer arietinum L.) cell cultures. Purification, characterization and cDNA cloning of NADPH:isoflavone oxidoreductase. Eur J Biochem 1991; 200: 751–757.

    Article  PubMed  CAS  Google Scholar 

  58. Reinecke T and Kindl H. Characterization of bibenzyl synthase catalysing the biosynthesis of phytoalexins of orchids. Phytochemistry 1994; 35: 63–66.

    Article  CAS  Google Scholar 

  59. Rakwal R, Hasegawa M, and Kodama O A methyltransferase for synthesis of the flavanone phytoalexin sakuranetin in rice leaves. Biochem Biophys Res Commun 1996; 222: 732–735.

    Article  PubMed  CAS  Google Scholar 

  60. Dixon RA and Paiva NL. Stress-induced phenylpropanoid metabolism. The Plant Cell 1995; 7: 1085–1097.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hain, R., Grimmig, B. (2000). Modification of Plant Secondary Metabolism by Genetic Engineering. In: Verpoorte, R., Alfermann, A.W. (eds) Metabolic Engineering of Plant Secondary Metabolism. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9423-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9423-3_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5475-3

  • Online ISBN: 978-94-015-9423-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics