Skip to main content

Transferring strategy and structure: The German chemical industry as an exemplar for Great Britain

  • Chapter

Part of the book series: Chemists and Chemistry ((CACH,volume 18))

Abstract

The interwar years saw unprecedented growth of research by state and by industry. But different countries could build upon different foundations. While Germany drew on experiences from an elaborated science system stemming from well before 1914, Great Britain and the U.S. had to start from a somewhat lower institutional and experience level. In some respects the U.S. was probably more advanced in organizing and financing science, research and development than Britain, which counted to a larger extent on state support after 1918.1 In the U.S., like Germany, the system of organized and continuous industrial research was closely linked to the chemical, electrical, and steel industries since around 1900. U.S. firms established elaborated structures and strategies on their own, after having seen German firms creating large inhouse research and development facilities. U.S. enterprises did not regard German firms, their business strategies, their research and development structures, or their methods and goals of innovation as exemplary. Accordingly, they did not attempt to transplant strategic and organizational experiences from Germany to the U.S., and American firms and the U.S. science system shall therefore not be dealt with here.

Original research on this project has been financed by the Volkswagen Foundation. I am grateful to Margit Szöllösi-Janze, Carsten Reinhardt, and Luitgard Marschall for comments on earlier drafts of this paper.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For the U.S. see David A. Hounshell, “The evolution of industrial research in the United States” in Richard S. Rosenbloom and William J. Spencer, eds, Engines of innovation: U.S. industrial research at the end of an era (Boston, 1996), 13–85

    Google Scholar 

  2. David C. Mowery and Nathan Rosenberg, “The U.S. research system before 1945.” Technology and the pursuit of economic growth (Cambridge, 1989), 59–97.

    Chapter  Google Scholar 

  3. For Britain see David Edgerton, Science, technology and the British “industrial decline,” 1870–1970 (Cambridge, 1996)

    Google Scholar 

  4. David Edgerton and Sally Horrocks, “British industrial research and development before 1945,” Economic history review, 47 (1994), 213–238. For Germany, see Ulrich Marsch, “Industrieforschung in Deutschland und Großbritannien. Betriebsinterne und Gemeinschafts-forschungen bis 1936” (Phil. Diss. Munich 1996); and Luitgard Marschall, “Im Schatten der Synthesechemie: Industrielle Biotechnologie in Deutschland (1900–1970)” (Ph.D. Dissertation Munich, 1997).

    Google Scholar 

  5. Jonathan Harwood, “Institutional innovation in fin de siècle Germany,” British journal for the history of science, 27 (1994), 197–211.

    Article  Google Scholar 

  6. Lothar Burchardt, Friedenswirtschaft und Kriegsvorsorge. Deutschlands wirtschaftliche Rüstungsbestrebungen vor 1914. Schriften des Militärgeschichtlichen Forschungsamtes, Boppard 1968. For a comparative perspective on armaments and policies leading to World War I, see David G. Hermann, The arming of Europe and the making of the First World War (Princeton, 1996).

    Google Scholar 

  7. This is somewhat contrary to the views of Knut Borchardt, who stated that investments during the final years of the Weimar Republic were too low and wages too high. Though I do not disagree with this, I argue that over the long run, German entrepreneurs and managers preferred capital intensive technologies that were to lessen the burden of imports and that would use science-intensive technology to create substitutes for foreign raw materials. See “Economic causes of the collapse of the Weimar Republic” (1980), reprinted in Knut Borchardt, ed., Perspectives on modern German economic history and policy (New York, 1991).

    Google Scholar 

  8. Richard Nelson, ed., National innovation systems. A comparative analysis (Oxford, 1993), 508.

    Google Scholar 

  9. See John Joseph Beer, The emergence of the German dye industry (Urbana, 1959)

    Google Scholar 

  10. Paul M. Hohenberg, Chemicals in Western Europe. An economic study of technological change (Chicago, 1967)

    Google Scholar 

  11. Ludwig F. Haber, The chemical industry during the nineteenth century. A study of the economic aspects of applied chemistry in Europe and North Amercia (Oxford, 1958)

    Google Scholar 

  12. Ludwig F. Haber, The chemical industry 1900–1930. International growth and technological change (Oxford, 1971)

    Google Scholar 

  13. Alfred, D. Chandler Jr., Scale and scope. The dynamics of industrial capitalism (Cambridge, MA, 1990), 474–486

    Google Scholar 

  14. Gottfried Plumpe, Die LG. Farbenindustrie AG. Wirtschaft, Technik und Politik 1904–1945 (Berlin, 1990), 40–57.

    Google Scholar 

  15. The chemical industry. Documentation of international economic conference, Geneva, May 1927 (Publication of the League of Nations, II, Economic and Financial Section, 1927.II.4), 28 and 84.

    Google Scholar 

  16. Otto Keck, The national system for technical innovation in Germany, in Richard Nelson, ed., National innovation systems. A comparative analysis (Oxford, 1993), 115–157, on 128.

    Google Scholar 

  17. See Chandler Scale and scope. The dynamics of industrial capitalism (Cambridge, MA, 1990), 474–486, app. C.1.

    Google Scholar 

  18. See Carl Duisberg, “Denkschrift über die Vereinigung der deutschen Farbenfabriken,” 1904.

    Google Scholar 

  19. Carl Duisberg, Abhandlungen, Vorträge und Reden aus den Jahren 1882–1921 (Berlin, 1923), 343–369, on 347

    Google Scholar 

  20. and Carl Duisberg, “Die Vereinigung der deutschen Farbenfabriken” (1915), Tradition, 8 (1963), 193–227.

    Google Scholar 

  21. See Fritz Redlich, Die volkswirtschaftliche Bedeutung der deutschen Teerfarbenindustrie (Munich, 1914), 36

    Google Scholar 

  22. Carsten Reinhardt, Forschung in der chemischen Industrie. Die Entwicklung synthetischer Farbstoffe bei BASF und Hoechst, 1863–1914 (Freiberg/Sachen, 1997), 42.

    Google Scholar 

  23. Claus Ungewitter, Chemie in Deutschland. Rückblick und Ausblick (Berlin, 1938), 19.

    Google Scholar 

  24. Christian Schallermair, “Die deutsche Sodaindustrie und die Entwicklung des deutschen Sodaaußenhandels 1872–1913,” Vierteljahrsschrift für Sozial- und Wirtschaftsgeschichte, 84 (1997), 33–67.

    Google Scholar 

  25. Ref. 7, 79–81.

    Google Scholar 

  26. Ibid., 54 and 81. 16. Keck (ref. 8), 128.

    Google Scholar 

  27. Ulrich Marsch, “Strategies for success: Research organization in German chemical companies and LG. Farben until 1936,” History and technology, 12 (1994), 25–77.

    Article  Google Scholar 

  28. Marsch (ref. 17), 76.

    Google Scholar 

  29. John J. Beer, “Coal tar dye manufacture and the origins of the modern industrial research laboratory,” Isis, 49 (1958), 123–131

    Article  Google Scholar 

  30. Hans Georg Grimm, “Organisation der Forschung in der chemischen Industrie,” Stahl und Eisen, 55 (1935), 349–352

    Google Scholar 

  31. Ernst Homburg, “The emergence of research laboratories in the dyestuffs industry, 1870–1900,” British journal for the history of science, 25 (1992), 91–111

    Article  Google Scholar 

  32. Georg Meyer-Thurow, “The industrialization of invention: A case study from the German chemical industry,” Isis, 73 (1982), 363–381; Marsch (ref. 17); Reinhardt (ref. 11).

    Article  Google Scholar 

  33. Henk van den Belt, Arie Rip, “The Nelson-Winter-Dosi model and synthetic dye chemistry,” in Wiebe E. Bijker, Thomas P. Hughes, Trevor Pinch, eds., The social construction of technological systems (Cambrigde, MA, 1994), 135–158, on 155.

    Google Scholar 

  34. See also David F. Noble, America by design: Science, technology, and the rise of corporate capitalism (New York, 1977).

    Google Scholar 

  35. Ralph Landau, Nathan Rosenberg, “Successful commercialization in the chemical process industries,” in Nathan Rosenberg, Ralph Landau, David C. Mowery, eds., Technology and the wealth of nations (Stanford, 1992), 73–120.

    Google Scholar 

  36. For the case of pharmaceutical firms and dyestuffs producers, which had diversified into pharmaceuticals, see Wolfgang Wimmer, “Wir haben fast immer was Neues,” Gesundheitswesen und Innovation in der Pharma-Industrie in Deutschland, 1880–1935 (Berlin, 1994). For pharmaceutical and early biotechnological research see also Marschall (ref. 1), chapts. 4–7.

    Google Scholar 

  37. Hartmut Scholz, “August Wilhelm Hofmann und die Reform der Chemikerausbildung an deutschen Hochschulen,” in Christoph Meinel and Hartmut Scholz, eds., Die Allianz von Wissenschaft und Industrie. August Wilhelm Hofmann (1818–1892) (Weinheim, 1992), 221–234; see also Carl Duisberg’s Statements on the planned reform of university education in “Zum Chemiker-Examen,” “Zum Staatsexamen für Chemiker,” “Staatsprüfung für Chemiker,” in Duisberg, Abhandlungen (ref. 10), 171–200.

    Google Scholar 

  38. Arndt Fleischer, Patentgesetzgebung und chemisch-pharmazeutische Industrie im deutschen Kaiserreich 1871–1918 (Stuttgart, 1984), 53–77 and 368–372;

    Google Scholar 

  39. Eberhard Schmauderer, “Leitmodelle im Ringen der Chemiker um eine optimale Ausformung des Patentwesens auf die besonderen Bedürfnisse der Chemie während der Gründerzeit,” Chemie-Ingenieur-Technik, 43 (1971), 531–540

    Article  Google Scholar 

  40. Eberhard Schmauderer, “Der Einfluß der Chemie auf die Entwicklung des Patentwesens in der zweiten Hälfte des 19. Jahrhunderts,” Tradition, 16 (1971) 144–176; Henk van den Belt and Arie Rip, (ref. 20); see also Petition of the Farbenfabriken Bayer, “Zur Revision des deutschen Patent-gesetzes” at the German Reichstag 1891, in Duisberg, Abhandlungen (ref. 10), 625–629.

    Google Scholar 

  41. Regarding inorganics, this argument was put forward by Jeffrey Allen Johnson, The Kaiser’s chemists. Science and modernization in Imperial Germany (Chapel Hill, 1990), chapts 2 and 7; I am indebted to Luitgard Marschall who drew my attention to the backwardness in pharmaceutical and biotechnological research, see Marschall (ref. 1), 87–145, and 146–216.

    Google Scholar 

  42. Alan Beyerchen, “On the stimulation of excellence in Wilhelmian Science,” in Jack R. Dukes and Joachim Remak, eds., Another Germany: A reconsideration of the Imperial Era (Boulder, 1988), 139–168.

    Google Scholar 

  43. It must be added here that, for example, at the Kaiser Wilhelm Institute for Chemistry, conventional research on organic chemistry proceeded alongside new investigations on radium by Otto Hahn and Lise Meitner; Fritz Haber pursued right from the start innovative research in physical chemistry; but all in all, the new institutes did not follow only new scientific ways.

    Google Scholar 

  44. Johnson (ref. 26), chapt. 7.

    Google Scholar 

  45. Emil Fischer, “Die Aufgaben des Kaiser-Wilhelm-Instituts für Kohlenforschung”, Stahl und Eisen, 32 (1912), 1898–1903.

    Google Scholar 

  46. For early research and development in the iron and steel industry see Manfred Rasch, “Erfahrung, Forschung und Entwicklung in der deutschen Eisen- und Stahlerzeugung. Versuch einer Begriffserklärung und Periodisierung der letzten 200 Jahre,” Ferrum, 68 (1996), 4–29.

    Google Scholar 

  47. For the role of physicists in electrical and optical enterprises see Helga Schultrich, Die Herausbildung des Industrie-Physikers im kapitalistischen Deutschland, dargestellt am Beispiel des Siemens- und des Zeiss-Konzerns (Ph.D. Dissertation Technical University of Dresden, 1981).

    Google Scholar 

  48. See Chandler (ref. 6), app. B.l.

    Google Scholar 

  49. For this discussion see Derek Aldcroft, ed., The development of British industry and foreign competition, 1875–1914 (Glasgow, 1968)

    Google Scholar 

  50. Donald McCloskey ed., Essays on a mature economy: Britain after 1840 (London, 1981)

    Google Scholar 

  51. Sidney Pollard, Britain’s prime and Britain’s decline (London, 1989).

    Google Scholar 

  52. See James Donnelly, “Consultants, managers, testing slaves: Changing roles for chemists in the British alkali industry, 1850–1920,” Technology and culture, 35 (1994), 100–128.

    Article  Google Scholar 

  53. Ivan Levinstein, “Observations and suggestions on the present position of the British chemical industry, with special reference to coal-tar derivatives,” Journal of the Society of Chemical Industry, 5 (1886), 351–359.

    Google Scholar 

  54. See Ulrich Trumpener, “The road to Ypers. The beginnings of gas-warfare in World War One,” Journal of modern history, 47 (1975), 460–480

    Article  Google Scholar 

  55. Ludwig F. Haber, The poisonous cloud: Chemical warfare in the first world war (Oxford, 1986).

    Google Scholar 

  56. Ministry of Munitions, Confidential Report of the British Mission appointed to visit enemy chemical factories in the occupied zone engaged in production of munitions of war, 1919, Cmd. 1137, Parliamentary papers 1921,20, 11–12; see also Haber, “The chemical industry” (1971) (ref. 6), 208–217.

    Google Scholar 

  57. Plumpe (ref. 6), 63–95; Joachim Radkau, Technik in Deutschland. Vom 18. Jahrhundert bis zur Gegenwart (Frankfurt am Main, 1989), 254–269

    Google Scholar 

  58. Arthur von Weinberg, “Emil Fischers Tätigkeit während des Krieges,” Die Naturwissenschaften (1919), 868–873.

    Google Scholar 

  59. Lothar Burchardt, “Walther Rathenau und die Anfänge der deutschen Rohstoffbewirtschaftung im Ersten Weltkrieg,” Tradition, 15 (1970), 169–196

    Google Scholar 

  60. Ernst Schulin, “Krieg und Modernisierung. Rathenau als philosophierender Industrieorganisator im Ersten Weltkrieg,” in Thomas P. Hughes, ed., Ein Mann vieler Eigenschaften. Walther Rathenau und die Kultur der Moderne (Berlin, 1990), 55–69.

    Google Scholar 

  61. This is a well researched topic so that it can be dealt with briefly here. See Haber, “The chemical industry”(1971) (ref. 6),184–217; Chandler, “Scale” (ref. 6), 503–584; and Plumpe, “Die LG. Farbenindustrie” (ref. 6), 63–95. See recently with more references Margit Szöllösi-Janze, “Berater, Agent, Interessent? Fritz Haber, die BASF und die staatliche Stickstoffpolitik im Ersten Weltkrieg,” Berichte zur Wissenschaftsgeschichte, 19 (1996), 105–117.

    Article  Google Scholar 

  62. For a conceptual overview with further references see “Path dependent aspects of technological change,” in Nathan Rosenberg, Exploring the black box: Technology, economics and history (Cambridge, 1994), 9–24.

    Google Scholar 

  63. See Aldcroft, ed. (ref. 33); Clive Trebilcock, “War and the failure of industrial mobilization: 1899 and 1914,” in J.M. Winter, ed., War and economic development. Essays in memory of David Joslin (Cambridge, 1975), 139–164.

    Google Scholar 

  64. Haber, “The chemical industry”(1971) (ref. 6), 189–203.

    Google Scholar 

  65. See for example Committee on Commercial and Industrial Policy, Interim Report on Certain Essential Industries. Cd. 9032 (London, 1917, Parliamentary Papers 1918), 13.

    Google Scholar 

  66. Roy MacLeod, and Kay Andrews, “The origins of the DSIR: Reflections on ideas and men, 1915–1916,” Public adminstration, 48 (1970), 23–48

    Article  Google Scholar 

  67. Harry Melville, The department of scientific and industrial research (London, 1962)

    Google Scholar 

  68. Ian Varcoe, “Scientists, government and organised research in Great Britiain, 1914–16: The early history of the DSIR,” Minerva, 8 (1970), 192–216

    Article  Google Scholar 

  69. and Ian Varcoe, “Cooperative research associations in British industry, 1918–1934,” Minerva, 19 (1981), 433–463.

    Article  Google Scholar 

  70. Report of the Committee of the Privy Council for Scientific and Industrial Research for the year 1915–16, Cd. 8336, Parliamentary Papers 1916,8; Varcoe, “Cooperative research” (ibid.), 443.

    Google Scholar 

  71. Ibid., “Report,” 42; Report of the Committee of the Privy Council for Scientific and Industrial Research for the Year 1916–17. Cd. 8718. Parliamentary Papers 1917–18, 11, p. 10, 16–17.

    Google Scholar 

  72. Association of British Chemical Manufacturers, Report of the British chemical mission on the chemical factories in the occupied area of Germany (London, 1919); Confidential Report on the leather mission to the occupied areas in Germany, Jul 1919 (Public Record Office London, DSIR 36/1898); J.E. Fletcher, and J.G. Pearce, “Continental Foundry Developments. Research Institutions and works laboratories for pure and applied research” (Jan 1926), Public Record Office London, DSIR 36/4238.

    Google Scholar 

  73. D.W. Hill, Cooperative research in industry (London, 1946)

    Google Scholar 

  74. Ronald S. Edwards, Cooperative Industrial Research. Astudy of the economic aspects of the research assocications (London, 1949)

    Google Scholar 

  75. Alfred D. Chandler Jr., “From industrial laboratories to departments of research and development,” in Kim B. Clark, Robert H. Hayes, and Christopher Lorenz, eds., The uneasy alliance. Managing the productivity-technology dilemma (Boston, 1985), 53–61; Edgerton and Horrocks (ref. 1).

    Google Scholar 

  76. C. Boeck, Die technisch-wissenschaftlichen Forschungsanstalten (Berlin, 1931).

    Google Scholar 

  77. Only in 1928 did AEG establish a large central laboratory, consisting of several departments. It can be assumed that prior to this date, in most of the many different AEG plants in Berlin, a number of smaller, unconnected, and not hierarchially organized research laboratories existed. See Zehn Jahre Forschungsinstitut der AEG (Berlin, 1938).

    Google Scholar 

  78. Ulrich Marsch, “Industrielle Gemeinschaftsforschung in Deutschland und Großbritannien — Kaiser-Wilhelm-Institute und Research Associations 1916–1936” in Bernhard vom Brocke and Hubert Laitko, eds., Die Kaiser-Wilhelm-/Max-Planck-Gesellschaft und ihre Institute, Studien zu ihrer Geschichte: Das Harnack-Prinzip (Berlin, 1996), 561–573.

    Google Scholar 

  79. This story is well known, it need not be repeated here. See Peter Hayes, Industry and ideology. LG. Farben in the Naziera (Cambridge, 1987); Plumpe, “Die I.G. Farbenindustrie” (ref. 6), 131–197.

    Google Scholar 

  80. Christian Kleinschmidt, Rationalisierung als Unternehmenstrategie. Die Eisen- und Stahlindustrie des Ruhrgebietes zwischen Jahrhundertwende und Weltwirtschaftskrise (Essen, 1993)

    Google Scholar 

  81. Andreas Zilt, “Industrieforschung bei der August-Thyssen-Hütte in den Jahren 1936 bis 1960,” Technikgeschichte, 60 (1993), 129–159.

    Google Scholar 

  82. See Final Report of the Committee on Commercial and Industrial Policy after the War. Cd. 9035 (London, 1918), Parliamentary Papers 1918, 13

    Google Scholar 

  83. Paul B. Johnson, Land fit for heroes. The planning of British reconstruction, 1916–1919 (Chicago, 1968).

    Google Scholar 

  84. . William J. Reader, “The chemical industry,” in Neil K. Buxton and Derek H. Aldcroft, eds., British industry between the wars. Instability and industrial development 1919–1939 (London, 1979), 156–178.

    Google Scholar 

  85. Wiliam J. Reader, Imperial chemical industries: A history (2 vols., Oxford, 1970, 1975); Anthony N. Stranges, “From Birmingham to Billingham: High-pressure coal Hydrogenation in Great Britain,” Technology and culture, 26 (1985), 726–757.

    Article  Google Scholar 

  86. Reader (ref. 58), 1, 365–369.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marsch, U. (2000). Transferring strategy and structure: The German chemical industry as an exemplar for Great Britain. In: Lesch, J.E. (eds) The German Chemical Industry in the Twentieth Century. Chemists and Chemistry, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9377-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9377-9_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5529-3

  • Online ISBN: 978-94-015-9377-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics