Skip to main content

Part of the book series: Forestry Sciences ((FOSC,volume 65))

Abstract

The roots of forest trees consist of long-lived, woody coarse roots and non-woody, small-diameter fine roots. There is no established convention defining the diameter-size range of fine roots (Fogel 1983). In general, however, roots with a diameter of less than 2 mm are regarded as fine roots (Vogt et al. 1983). The finest roots (diameter < 1 mm) are almost always mycorrhizal in forest trees in Finland. These roots form the major portion of the total length of the roots on a tree. Mycorrhizal associations are essential for conifers because they enhance nutrient uptake by greatly increasing the surface area of the roots. Mycorrhiza hyphae are widely distributed throughout the uppermost layers of the soil, and can penetrate between smaller soil particles than roots (Eissenstat and Van Rees 1994). Mycorrhiza may also increase fine root longevity (Reid 1984). Fine roots are constantly being renewed. The age of an individual fine root varies between a few weeks and a few years. This means that a high proportion of the organic matter in the soil originates from dead and decomposing fine roots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, M.B., Pennell, K.D. and Campbell, R.G. (1989) Fine root distribution in a young loblolly pine (Pinus taeda L.) stand: effects of preplant phosphorus fertilization. Plant & Soil 113:275–278.

    Article  Google Scholar 

  • Bowen, G.D. and Theodorou, C. (1973) Growth of ectomycorrhizal fungi around seeds and roots. In: Marks, G.C. and Kozlowski, T.T. (eds.) Ectomycorrhizae: their ecology and physiology. Academic Press, New York. 444 p.

    Google Scholar 

  • Deans, J.D. (1979) Fluctuations of the soil environment and fine root growth in a young Sitka spruce plantation. Plant & Soil 52: 195–208.

    Article  Google Scholar 

  • Eissenstat, D.M. and Van Rees, K.C.J. (1994) The growth and function of plant roots. In: Gholz, H.L., Linder, S. and McMurtrie, R.E. (eds.) Environmental constrains on the structure and productivity of pine forest ecosystems: a comparative analysis. Ecol. Bull. (Copenhagen) 43: 76–91.

    Google Scholar 

  • Ericsson, T. and Ingestad, T. (1988) Nutrition and growth of birch seedlings at varied relative phosphorus addition rates. Physiol. Plant. 72: 227–235.

    Article  CAS  Google Scholar 

  • Fairley, R.I. and Alexander, I.J. (1985) Methods of calculating fine root production in forests. In: Fitter, A.H. (ed.) Ecological interactions in soil. Spec. Publ. British Ecol. Soc. 4: 3742.

    Google Scholar 

  • Finér, L., Laine, J. and Halko, L. (1992) Fine root dynamics on two drained peatland sites. Suo 43: 207–210.

    Google Scholar 

  • Fogel, R. (1983) Root turnover and productivity of coniferous forest. Plant & Soil 71: 75–85.

    Article  Google Scholar 

  • Ford, E.D. and Deans, J.D. (1977) Growth of a sitka spruce plantation: spatial distribution and seasonal fluctuations of lengths, weights and carbohydrate concentrations of fine roots. Plant & Soil 47: 463–485.

    Article  Google Scholar 

  • Gower, S.T., Gholz, H.L., Nakane, K. and Baldwin, V.C. (1994) Production and carbon allocation patterns of pine forests. In: Gholz, H.L, Linder, S. and McMurtie, R.E. (eds.) Environmental constraints on the structure and productivity of pine forest ecosystems: a comparative analysis. Ecol. Bull. 43: 115–135.

    Google Scholar 

  • Grier, C.C., Vogt, K.A., Keyes, M.R. and Edmonds, R.L. (1981) Biomass distribution and above- and below-ground production in young and mature Abies amabilis zone ecosystems of the Washington Cascades. Can. J. For. Res. 11: 155–167.

    Article  Google Scholar 

  • Hartmann, F. (1951) Der Waldboden. Humus-, Boden- und Wurzeltypen als Standortanzeige. Österreichisches Produktivitäts-Zentrum. Wien. 152 p.

    Google Scholar 

  • Heikurainen, L. (1955) Über Veränderungen in den Wurzelverhältnissen der Kieferbestände auf Moorböden im Laufe des Jahres. Acta For. Fenn. 67: 1–70.

    Google Scholar 

  • Helmisaari, H.-S. (1992) Nutrient retranslocation in three Pinus sylvestris stands. For. Ecol. Manage. 51: 347–367.

    Article  Google Scholar 

  • Helmisaari, H.-S. (1995) Nutrient cycling in Pinus sylvestris stands in eastern Finland. Plant & Soil 168–169: 327–336.

    Article  Google Scholar 

  • Helmisaari, H.-S. and Hallbäcken, L. (1999) Fine root biomass and biomass production in limed and fertilized Norway spruce (Picea abies (L.) Karst.) stands. For. Ecol. Manage. 119:99–110.

    Article  Google Scholar 

  • Helmisaari, H.-S., Nöjd, P. and Lumme, I. (1999) Fine roots and growth in a Norway spruce stand in S Finland exposed to drought and elevated soil nitrogen levels. In: Chalot, M. and Pireaux, J.-C. (eds.) Dynamics of Physiological Processes in Woody Roots. Second International Symposium, Nancy, France, September 1999. Abstracts. p. 116.

    Google Scholar 

  • Janhunen, S., Palomäki, P. and Holopainen, T. (1995) Aluminium causes nutrient imbalance and structural changes in the needles of Scots pine without inducing clear root injuries. Trees 9: 134–142.

    Article  Google Scholar 

  • Kalela, E.K. (1955) Über Veränderungen in den Wurzelverhältnissen der Kiefernbestände im Laufe der VegetationsPeriode. Acta For. Fenn. 65: 1–40.

    Google Scholar 

  • Kramer, P.J. (1950) Effects of wilting on the subsequent intake of water by plants. Amer. J. Bot. 37: 280–284.

    Article  Google Scholar 

  • Kramer, P.J. (1983). Water relations of plants. Academic Press, Lontoo. 489 p.

    Google Scholar 

  • Kramer, P.J. and Kozlowski, T.T. (1979) Physiology of woody plants. Academic Press, New York — San Fransisco — London. 811 p.

    Google Scholar 

  • Köstler, J.N., Brückner, E. and Bibelriether, H. (1968) Die Wurzeln der Waldbäume in Mitteleuropa. Verl. Paul Parey, Hamburg — Berlin. 284 p.

    Google Scholar 

  • Laiho, O. (1983) Mykoritsat puiden ravinnetaloudessa. In: Metsäpuiden fysiologiaa I. Ravin-netalouden perusteita. University of Helsinki, Department of Silviculture. Publications 39: 177–188.

    Google Scholar 

  • Laitakari, E. (1927) Männyn juuristo, morfologinen tutkimus. Acta For. Fenn. 33: 1–306.

    Google Scholar 

  • Laitakari, E. (1934) Koivun juuristo. Acta For. Fenn. 41: 1–216.

    Google Scholar 

  • Lanner, R.M. (1976) Patterns of shoot development in Pinus. In: Cannell, M.G.R. and Last, F. (eds.) Tree physiology and yield improvement. Academic Press, London. pp. 223–243.

    Google Scholar 

  • Lippu, J. (1999) Assimilation and allocation of carbon in Scots pine seedlings during shoot elongation and as affected by soil temperature. University of Helsinki, Department of Forest Ecology. Publications 19. 49 p.

    Google Scholar 

  • Lehto, T. (1992a) Effect of drought on Picea sitchensis seedlings inoculated with mycorrhizal fungi. Scand. J. For Res. 7: 177–182.

    Article  Google Scholar 

  • Lehto, T. (1992b) Mycorrhizas and drought resistance of Picea sitchensis (Bong.) Carr. I. In conditions of nutrient deficiency. New Phytol. 122: 661–668.

    Google Scholar 

  • Linder, S. and Rook, D. (1984) Effect of mineral nutrition on carbon dioxide exchange and partitioning of carbon in trees. In: Bowen, G.D. and Nambiar, E.K.S. (eds.) Nutrition of plantation forests. Academic Press, London. pp. 211–236.

    Google Scholar 

  • Lopushinsky, W. and Kaufmann, M.R. (1984) Effects of cold soil on water relations and spring growth of Douglas-fir seedlings. For. Sci. 30(3): 628–634.

    Google Scholar 

  • Lyford, W.H. (1975) Rhizography of non-woody roots of trees in the forest floor. In: Torrey, J.G. and Clarkson, D.T. (eds.) The development and function of roots. Academic Press, New York. pp. 179–196.

    Google Scholar 

  • Lyr, H. and Hoffmann, G. (1967) Growth rates and growth periodicity of tree roots. Int. Rev. For.Res. (N.Y.) 2: 181–236.

    Google Scholar 

  • Makkonen, K. and Helmisaari, H.-S. (1998) Seasonal and yearly variations of fine root biomass and necromass in a Scots pine (Pinus sylvestris L.) stand. For. Ecol. Manage. 102: 283–290.

    Article  Google Scholar 

  • Makkonen, K. and Helmisaari, H.-S. (1999) Assessing fine root biomass and production in a Scots pine stand — comparison of soil core and root ingrowth core methods. Plant & Soil (In press).

    Google Scholar 

  • Marshall, J.D. (1986) Drought and shade interact to cause fine root mortality in Douglas-fir seedlings. Plant & Soil 91: 51–60.

    Article  Google Scholar 

  • McClaugherty, C.A., Aber, J.D. and Melillo, J.M. (1982) The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology 63: 1481–1490.

    Article  Google Scholar 

  • Mengel, K. and Kirkby, E.A. (1979) Principles of plant nutrition. International Potash Institute. Bern, Switzerland. 593 p.

    Google Scholar 

  • Nadelhoffer, K.J. and Raich, J.W. (1992) Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology 73: 1139–1147.

    Article  Google Scholar 

  • Persson, H. (1978) Root dynamics in a young Scots pine stand in Central Sweden. Oikos 30(3): 508–519.

    Article  Google Scholar 

  • Persson, H. (1980) Spatial distribution of fine roots growth, mortality and decomposition in a young Scots pine stand in Central Sweden. Oikos 34: 7–87.

    Article  Google Scholar 

  • Persson, H. (1983) The distribution and productivity of fine roots in boreal forests. Plant & Soil 71: 87–101.

    Article  Google Scholar 

  • Persson, H. (1984) The dynamic fine roots of forest trees. In: Ågren, G. (ed.) The state and change of forest ecosystems — Indicators in current research. Swed. Univ. Agr. Sci., Dept. Ecol. Environ. Res. Uppsala. Report 13: 193–203.

    Google Scholar 

  • Pigott, C.D. (1982) Survival of mycorrhiza formed by Cenococcum geophilum Fr. in dry soils. New Phytol. 92: 513–517.

    Article  Google Scholar 

  • Pregitzer, K.S., Dickmann, D.I., Hendrick, R. and Nguyen, P.V. (1990) Whole-tree carbon and nitrogen partitioning in young hybrid poplars. Tree Physiol. 7: 79–63.

    Article  PubMed  CAS  Google Scholar 

  • Reid, C.P.P. (1984) Mycorrhizae: A root-soil interface in plant nutrition. In: American Society of Agronomy (ed.) Microbial-plant interactions. ASA Special Publ. 47. pp. 29–50.

    Google Scholar 

  • Ryan, M.G., Binkley, D. and Fownes, J.H. (1996) Age-related decline in forest productivity: Pattern and process. In: Begon, M. and Fitter, A.H. (eds.) Advances in Ecological Research 27: 213–262.

    Google Scholar 

  • van den Driessche, R. (1987) Importance of current photosynthate to new root growth in planted conifer seedlings. Can. J. For. Res. 17(8): 776–782.

    Article  Google Scholar 

  • Van Rees, K.C.J and Comerford, N.B. (1990) The role of woody roots of slash pine seedlings in water and potassium absorption. Can. J. For. Res. 20: 1183–1191.

    Article  Google Scholar 

  • Vapaavuori, E.M., Rikala, R. and Ryyppö, A. (1992) Effects of root temperature on growth and photosynthesis in conifer seedlings during shoot elongation. Tree Physiol. 10: 217–230.

    Article  PubMed  Google Scholar 

  • Vogt, K.A., Edmonds, R.L. and Grier, C.C. (1981) Seasonal changes in biomass and vertical distribution of mycorrhizal and fibrous-textured conifer fine roots in 23- and 180-year-old subalpine Abies amabilis stands. Can. J. For. Res. 11: 223–229.

    Article  Google Scholar 

  • Vogt, K.A., Grier, C.C., Meier, C.E. and Keyes, M.R. (1983) Organic matter and nutrient dynamics in forest floors of young and mature Abies amabilis stands in western Washington, as suggested by fine root input. Ecol. Monogr. 53: 139–157.

    Article  Google Scholar 

  • Yli-Vakkuri, P. (1953) Tutkimuksia puiden välisistä elimellisistä juuriyhteyksistä männiköissä. Acta For. Fenn. 60.3. 117 p.

    Google Scholar 

  • Ågren, G.I. (1983) Nitrogen productivity of some conifers. Can. J. For. Res. 137: 494–500.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Helmisaari, HS., Lehto, T., Makkonen, K. (2000). Fine Roots and Soil Properties. In: Mälkönen, E. (eds) Forest Condition in a Changing Environment. Forestry Sciences, vol 65. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9373-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9373-1_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5423-4

  • Online ISBN: 978-94-015-9373-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics