Skip to main content

Application of Artificial Neural Networks to Forecasting of Surface Water Quality Variables: Issues, Applications and Challenges

  • Chapter

Part of the book series: Water Science and Technology Library ((WSTL,volume 36))

Abstract

Amidst growing concerns for the state of the world’s surface water resources, water quality modeling is assuming increasing importance. Thomann (1998) suggests that we are entering a’Golden Age’ of water quality modeling in which surface water models will make significant contributions towards fuller diagnosis of problems, uncovering surprises, providing a framework for decision-making and lessening future conflicts between environmental interests, managers and those who are regulated. Traditionally, there have been two main philosophical approaches to surface water quality modeling. Process based models consider the underlying physical processes directly, whereas statistical models determine relationships based on historical data sets. Of course, in reality, process based models usually require some degree of statistical calibration to historical data, whereas statistical models should be based, where possible, on relationships that have a physical basis. Recently, artificial neural networks (ANNs) have emerged as alternatives to traditional statistical models in a variety of fields, including water quality modeling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, G., and le Marshall, J. F. (1994) An evaluation of neural networks and discriminant analysis methods for application in operational rain forecasting, Aust. Meteorol. Mag., 43(1), 17–28.

    Google Scholar 

  • Andrews, R., Diederich, J., and Tickle, A. B. (1995) A survey and critique of techniques for extracting rules from trained artificial neural networks, Knowledge Based Syst., 8, 373–389.

    Article  Google Scholar 

  • Bastarache, D., El-Jabi, N., Turkham, N., and Clair, T. A. (1997) Predicting conductivity and acidity for small streams using neural networks, Can. J. Civil Eng., 24(6), 1030–1039.

    Google Scholar 

  • Bebis, G., and Georgiopoulos, M. (1994) Feed-forward neural networks: Why network size is so important, IEEE Potentials, October/November, 27–31.

    Google Scholar 

  • Bienenstock, E., and Geman, S. (1994) comment on “Neural networks: A review from a statistical perspective” by B. Cheng and D. M. Titterington, Stat. Sci., 9(1), 36–38.

    Google Scholar 

  • Box, G. E. P., and Jenkins, G. M. (1976) Time Series Analysis, Forecasting and Control, Holden-Day Inc., San Francisco.

    Google Scholar 

  • Breiman, L. (1994) comment on “Neural networks: A review from a statistical perspective” by B. Cheng and D. M. Titterington, Stat. Sci., 9(1), 38–42.

    Google Scholar 

  • Burch, M. D., Baker, P. D., Steffensen, D. A., Bursill, D. B., Bain, D. B. G., G. G., and Brookes, J. D. (1994) Critical flow and blooms of the cyanobacterium Anabaena ciricinalis in the River Murray, South Australia, Proceedings of the Environmental Flows Seminar, Canberra, 44–51.

    Google Scholar 

  • Burden, F. R., Brereton, R. G., and Walsh, P. T. (1997) Cross-validatory selection of test and validation sets in multivariate calibration and neural networks as applied to spectroscopy, Analyst, 122(10), 1015–1022.

    Article  Google Scholar 

  • Burke, L. I., and Ignizio, J. P. (1992) Neural networks and operations research: an overview, Comput. Oper. Res., 19(3/4), 179–189.

    Article  Google Scholar 

  • Castellano, G., Fanelli, A. M., and Pelillo, M. (1997) An iterative pruning algorithm for feedforward neural networks, IEEE Trans. Neural Networks, 8(3), 519–531.

    Article  Google Scholar 

  • Chakraborty, K., Mehrotra, K., Mohan, C. K., and Ranka, S. (1992) Forecasting the behaviour of multivariate time series using neural networks, Neural Networks, 5, 961–970.

    Article  Google Scholar 

  • Chatfield, C. (1975) The Analysis of Time Series: Theory and Practice, Chapman and Hall Ltd.

    Google Scholar 

  • Chatfield, C. (1993) Neural networks: Forecasting breakthrough or just a passing fad ?, Int. J. Forecast., 9, 1–3.

    Article  Google Scholar 

  • Cheng, B., and Titterington, D. M. (1994) Neural networks: A review from a statistical perspective, Stat. Sci., 9(1), 2–54.

    Article  Google Scholar 

  • Chng, E. S., Chen, S., and Mulgrew, B. (1996) Gradient radial basis function networks for nonlinear and nonstationary time series prediction, IEEE Trans. Neural Networks, 7(1), 191–194.

    Article  Google Scholar 

  • Chon, K. H., and Cohen, R. J. (1997) Linear and nonlinear ARMA model parameter estimation using an artificial neural network, IEEE Trans. Biomed. Eng., 44(3), 168–174.

    Article  Google Scholar 

  • Clair, T. A., and Ehrman, J. M. (1996) Variations in discharge and dissolved organic carbon and nitrogen export from terrestrial basins with changes in climate: a neural network approach, Limnol. Oceanogr., 41(5), 921–927.

    Article  Google Scholar 

  • Connor, J. T., Martin, R. D., and Atlas, L. E. (1994) Recurrent neural networks and robust time series prediction, IEEE Trans. Neural Networks, 5(2), 240–254.

    Article  Google Scholar 

  • Darken, C., and Moody, J. (1990) Note on learning rate schedules for stochastic optimization, in R. P. Lippmann, J. E. Moody, and D. S. Touretzky (eds.), Note on learning rate schedules for stochastic optimization, Morgan Kaufmann, San Mateo, California.

    Google Scholar 

  • Dawson, C. W., and Wilby, R. (1998) An artificial neural network approach to rainfall-runoff modelling, Hydrol. Sci. J., 43(1), 47–66.

    Article  Google Scholar 

  • DeSilets, L., Golden, B., Wang, Q., and Kumar, R. (1992) Predicting salinity in the Chesapeake Bay using backpropagation, Comput. Oper. Res., 19(3/4), 227–285.

    Google Scholar 

  • Faraway, J., and Chatfield, C. (1998) Time series forecasting with neural networks: a comparative study using the airline data, Appl. Stat., 47, Part 2, 231–250.

    Google Scholar 

  • Fernando, D. A. K., and Jayawardena, A. W. (1998) Runoff forecasting using RBF networks with OLS algorithm, J. Hydrol. Eng., 3(3), 203–209.

    Article  Google Scholar 

  • Fortin, V., Ouarda, T. B. M. J., and Bobée, B. (1997) Comment on “The use of artificial neural networks for the prediction of water quality parameters” by H.R. Maier and G. C. Dandy, Water Resour. Res., 33(10), 2423–2424.

    Article  Google Scholar 

  • Gençay, R., and Liu, T. (1997) Nonlinear modelling and prediction with feedforward and recurrent networks, Physica D, 108(1–2), 119–134.

    Article  Google Scholar 

  • Hansen, J. V., and Nelson, R. D. (1997) Neural networks and traditional time series methods: A synergistic combination in state economic forecasts, IEEE Trans. Neural Networks, 8(4), 863–873.

    Article  Google Scholar 

  • Hathhorn, W. E., and Tung, Y.-K. (1988) Assessing the risk of violating stream water-quality standards, J. Environ. Manage., 26, 321–338.

    Google Scholar 

  • Haugh, L. D., and Box, G. E. P. (1977) Identification of dynamic regression (distributed lag) models connecting two time series, J. Am. Stat. Assoc., 72(397), 121–130.

    Article  Google Scholar 

  • Hill, T., Marquez, L., O’Connor, M., and Remus, W. (1994) Artificial neural network models for forecasting and decision making, Int. J. Forecast., 10, 5–15.

    Article  Google Scholar 

  • Hochreiter, S., and Schmidhuber, J. (1997) Long short-term memory, Neural Comp., 9, 1735–1780.

    Article  Google Scholar 

  • Jacobs, R. A. (1988) Increased rates of convergence through learning rate adaptation, Neural Networks, 1, 295–307.

    Article  Google Scholar 

  • Jayawardena, A. W., and Fernando, D. A. K. (1998) Use of radial basis function type artificial neural networks for runoff simulation, Comp. Aid. Civ. Infrastruct. Eng., 13(2), 91–99.

    Article  Google Scholar 

  • Kaastra, I., and Boyd, M. S. (1995) Forecasting futures trading volume using neural networks, J. Futures Markets, 15(8), 953–970.

    Article  Google Scholar 

  • Kaluli, J. W., Madramootoo, C. A., and Djebbar, Y. (1998) Modeling nitrate leaching using neural networks, Water Sci. Technol., 38(7), 127–134.

    Article  Google Scholar 

  • Karunanithi, N., Grenney, W. J., Whitley, D., and Bovee, K. (1994) Neural networks for river flow prediction, Journal of Computing in Civil Engineeirng, 8(2), 201–220.

    Article  Google Scholar 

  • Khotanzad, A., Afkhami-Rohani, R., Lu, T.-L., Abaye, A., Davis, M., and Maratukulam, D. J. (1997) ANNSTLF — a neural-network-based electric load forecasting system, IEEE Trans. Neural Networks, 8(4), 835–846.

    Article  Google Scholar 

  • Lachtermacher, G., and Fuller, J. D. (1994) Backpropagation in hydrological time series forecasting, in K. W. Hipel, A. I. McLeod, U. S. Panu, and V. P. Singh (eds.), Backpropagation in hydrological time series forecasting, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Lin, T., Horne, B. G., Tiño, P., and Giles, C. L. (1996) Learning long-term dependencies in NARX recurrent neural networks, IEEE Trans. Neural Networks, 7(6), 1329–1338.

    Article  Google Scholar 

  • Maier, H. R. (1995) Use of artificial neural networks for modelling multivariate water quality time series, PhD Thesis, The University of Adelaide, Adelaide.

    Google Scholar 

  • Maier, H. R., and Dandy, G. C. (1996a) Neural network models for forecasting univariate time series, Neural Network World, 6(5), 747–771.

    Google Scholar 

  • Maier, H. R., and Dandy, G. C. (1996b) The use of artificial neural networks for the prediction of water quality parameters, Water Resour. Res., 32(4), 1013–1022.

    Article  Google Scholar 

  • Maier, H. R., and Dandy, G. C. (1997a) Determining inputs for neural network models of multivariate time series, Microcomput. Civil Eng., 12(5), 353–368.

    Article  Google Scholar 

  • Maier, H. R., and Dandy, G. C. (1997b) Modelling cyanobacteria (blue-green algae) in the River Murray using artificial neural networks, Math. Comput. Sitnulat., 43(3–6), 377–386.

    Article  Google Scholar 

  • Maier, H. R., and Dandy, G. C. (1998a) The effect of internal parameters and geometry on the performance of back-propagation neural networks: An empirical study, Environ. Model. Softw., 13(2), 193–209.

    Article  Google Scholar 

  • Maier, H. R., and Dandy, G. C. (1998b) Understanding the behaviour and optimising the performance of back-propagation neural networks: An empirical study, Environ. Model. Softw., 13(2), 179–191.

    Article  Google Scholar 

  • Maier, H. R., and Dandy, G. C. (1999a) Empirical comparison of various methods for training feedforward neural networks for salinity forecasting, Water Resour. Res., 35(8), 2591–2596.

    Article  Google Scholar 

  • Maier, H. R., and Dandy, G. C. (1999b) Neural network based modelling of environmental variables: A systematic approach, Math. Comput. Model., in press.

    Google Scholar 

  • Maier, H. R., and Dandy, G. C. (1999c) Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications, Environ. Model. Softw., 15(1), 101–123.

    Article  Google Scholar 

  • Maier, H. R., Dandy, G. C., and Burch, M. D. (1998) Use of artificial neural networks for modelling cyanobacteria Anabaena spp. in the River Murray, South Australia, Ecol. Model., 105(2/3), 257–272.

    Article  Google Scholar 

  • Masters, T. (1993) Practical Neural Network Recipes in C++, Academic Press, San Diego.

    Google Scholar 

  • Minns, A. W., and Hall, M. J. (1996) Artificial neural networks as rainfall-runoff models, Hydrol. Sci. J., 41(3), 399–417.

    Article  Google Scholar 

  • Neural Ware. (1991) Neural Computing, Neural Works Professional II/Plus and Neural Works Explorer, NeuralWare Inc.

    Google Scholar 

  • Nunnari, G., Nucifora, A. F. M., and Randieri, C. (1998) The application of neural techniques to the modelling of time-series of atmospheric pollution data, Ecol. Model., 111(2–3), 187–205.

    Article  Google Scholar 

  • Recknagel, F. (1997) ANNA — Artificial neural network model for predicting species abundance and succession of blue-green algae, Hydrobiologia, 349, 47–57.

    Article  Google Scholar 

  • Recknagel, F., French, M., Harkonen, P., and Yabunaka, K.-I. (1997) Artificial neural network approach for modelling and prediction of algal blooms, Ecol. Model., 96, 11–28.

    Article  Google Scholar 

  • Refenes, A., Burgess, A. N., and Bents, Y. (1997) Neural networks in financial engineering: A study in methodology, IEEE Trans. Neural Networks, 8(6), 1223–1267.

    Article  Google Scholar 

  • Riedmiller, M., and Braun, H. (1993) A direct adaptive method for faster backpropagation learning: the Rprop algorithm, IEEE International Conference on Neural Networks, San Francisco, California, 586–591.

    Google Scholar 

  • Sarle, W. S. (1994) Neural networks and statistical models, Proceedings of the Nineteenth Annual SAS Users Group International Conference, 1538–1550.

    Google Scholar 

  • Silva, F., and Almeida, L. (1990) Acceleration techniques for the backpropagation algorithm, Lecture Notes Comput. Sci., 412, 110–119.

    Article  Google Scholar 

  • Thirumalaiah, K., and Deo, M. C. (1998) River stage forecasting using artificial neural networks, J. Hydrol. Eng., 3(1), 26–32.

    Article  Google Scholar 

  • Thomann, R. V. (1998) The future “Golden Age” of predictive models for surface water quality and ecosystem management, J. Env. Eng., 124(2), 94–103.

    Article  Google Scholar 

  • Tibshirani, R. (1994) comment on “Neural networks: A review from a statistical perspective” by B. Cheng and D. M. Titterington, Stat. Sci., 9(1), 48–49.

    Google Scholar 

  • Towell, G. G., Craven, M. K., and Shavlik, J. W. (1991) Constructive induction in knowledge-based neural networks, Proceedings of the 8th International Workshop on Machine Learning, 213–217.

    Google Scholar 

  • Vitela, J. E., and Reifman, J. (1997) Premature saturation in backpropagation networks — mechanism and necessary conditions, Neural Network.s, 10(4), 721–735.

    Article  Google Scholar 

  • Water Studies. (1992) River Murray Hydraulic Model, Water Studies, Brisbane.

    Google Scholar 

  • White, H. (1989) Learning in artificial neural networks: A statistical perspective, Neural Comp., 1, 425–464.

    Article  Google Scholar 

  • Whitehead, P. G., Howard, A., and Arulmani, C. (1997) Modelling algal growth and transport in rivers — a comparison of time series analysis, dynamic mass balance and neural network techniques, Hydrobiologia, 349, 39–46.

    Article  Google Scholar 

  • Yabunaka, K.-i., Hosomi, M., and Murakami, A. (1997) Novel application of back-propagation artificial neural network model formulated to predict algal bloom, Water Sci. Technol., 36(5), 89–97.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Maier, H.R., Dandy, G.C. (2000). Application of Artificial Neural Networks to Forecasting of Surface Water Quality Variables: Issues, Applications and Challenges. In: Govindaraju, R.S., Rao, A.R. (eds) Artificial Neural Networks in Hydrology. Water Science and Technology Library, vol 36. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9341-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9341-0_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5421-0

  • Online ISBN: 978-94-015-9341-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics