Towards the Modelling of the Second Solar Spectrum

  • Javier Trujillo Bueno
Part of the Astrophysics and Space Science Library book series (ASSL, volume 243)


This paper addresses the modelling issue of the second solar spectrum. This is the name given to the linearly polarized spectrum which can be observed close to the solar limb using spectro-polarimeters of high polarimetric sensitivity (Stenflo and Keller, 1997) . The second solar spectrum is due to scattering processes and offers a rich diagnostic potential for exploring solar magnetic fields via the Hanle effect. However, it is full of mysterious spectral features that cannot be understood with simplified polarization transfer theories, thus suggesting that the underlying scattering physics is more complex than previously thought. In this paper we argue that understanding the second solar spectrum requires the consideration of scattering processes in multilevel atomic models, taking fully into account the transfer of atomic polarization among all the levels involved. To give support to this statement, we begin by pointing out the drastically different predictions, given by the standard resonance line polarization theory, with respect to the emergent polarization in three different line transitions. This standard theory neglects the atomic polarization of the lower level of the line transition under consideration, i.e. it assumes that there are no population imbalances among the lower-level sublevels. The density matrix polarization transfer theory is then applied to formulate the scattering polarization problem taking properly into account atomic polarization in both the upper and the lower line levels. The consideration of lower-level atomic polarization leads to coupled non-linear and non-local sets of equations, even for the two-level model atom case considered in this paper. The unknowns of these equations are the irreducible tensor components of the atomic density matrix whose self-consistent values have first to be obtained to be able to calculate the emergent Stokes profiles. To solve this non-LTE problem of the 2 nd kind we present some iterative methods that are very suitable for developing a general multilevel scattering polarization code. With these numerical methods some model calculations are performed in order to demonstrate that the inclusion of lowerlevel atomic polarization leads to similar emergent linear polarization signals in such three different line transitions, as some observations show. After pointing out that the “Na solar paradox” (Landi Degl’Innocenti, 1998) might admit, in principle, a multilevel solution, the paper ends establishing a new solar paradox: “the Mg solar paradox” , for which no multilevel solution seems to be possible. This new result demonstrates that there indeed exists ground and metastable-level atomic polarization in the solar chromosphere and it suggests that the solution to these “solar paradoxes” is to be found by carefully revising our current ideas about the chromospheric magnetic field.

Key words

polarization scattering magnetic fields methods: numerical radiative transfer sun: chromosphere stars: atmospheres 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bianda, M., Solanki, S.K., Stenflo, J.O. (1998), Astron. Astrophys., 331, 760ADSGoogle Scholar
  2. Bommier, V. (1997a), Astron. Astrophys., 328, 706ADSGoogle Scholar
  3. Bommier, V. (1997b), Astron. Astrophys., 328, 726ADSGoogle Scholar
  4. Bommier, V. Sahal-Bréchot (1978), Astron. Astrophys., 69, 57ADSGoogle Scholar
  5. Bruls, J., Rutten, R.J., Shchukina, N.G. (1992), Astron. Astrophys., 265, 237ADSGoogle Scholar
  6. Fabiani Bendicho, P., Trujillo Bueno, J. (1999), in K.N. Nagendra, J.O. Stenflo (eds.), Solar Polarization, Proc. 2nd SPW, Kluwer, Dordrecht, (in this Volume)Google Scholar
  7. Faurobert-Scholl, M. (1992), Astron. Astrophys., 258, 521ADSGoogle Scholar
  8. Happer, W. (1972), Rev. Mod. Phys., 44, 169ADSCrossRefGoogle Scholar
  9. Jones, H. P. (1984), in “Chromospheric Diagnostics and Modelling”, B. Lites (ed.), National Solar ObservatoryGoogle Scholar
  10. Lamb, F. K., Ter Haar, D. (1971), Physics Reports, 2, No. 4, 253ADSCrossRefGoogle Scholar
  11. Landi Degl’Innocenti, E. (1983), Solar Phys., 85, 3CrossRefGoogle Scholar
  12. Landi Degl’Innocenti, E. (1984), Solar Phys., 91, 1Google Scholar
  13. Landi Degl’Innocenti, E. (1987), in Numerical Radiative Transfer, W. Kalkofen (ed.), Cambridge University Press, 265Google Scholar
  14. Landi Degl’Innocenti, E. (1998), Nature, 392, 256CrossRefGoogle Scholar
  15. Landi Degl’Innocenti, E., Bommier, V., Sahal-Bréchot, S. (1990), Astron. Astrophys., 235, 459ADSGoogle Scholar
  16. Landi Degl’Innocenti, E., Landi Degl’Innocenti, M., Landolfi, M. (1997), in Science with Themis, N. Mein and Sahal-Bréchot (eds.), Paris Obs. Publ., p. 59Google Scholar
  17. Landolfi, M., Landi Degl’Innocenti, E. (1986), Astron. Astrophys.,167, 200ADSGoogle Scholar
  18. Semel, M. (1994), in Solar Surface Magnetism, R.J. Rutten and C.J. Schrijver (eds.), Kluwer, p. 509CrossRefGoogle Scholar
  19. Socas Navarro, H., Trujillo Bueno, J. (1997), Astrophysical Journal, 490, 383ADSCrossRefGoogle Scholar
  20. Solanki, S., Steiner, O. (1990), Astron. Astrophys., 234, 519ADSGoogle Scholar
  21. Stenflo, J.O. (1994) Solar Magnetic Fields. Polarized Radiation Diagnostics. Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
  22. Stenflo, J.O. (1997), Astron. Astrophys., 324, 344ADSGoogle Scholar
  23. Stenflo, J.O., Twerenbold, D., Harvey, J. W., Brault, W. (1983), Astron. Astrophys. Suppl. Ser., 54, 505ADSGoogle Scholar
  24. Stenflo, J.O., Keller, C.U. (1997), Astron. Astrophys., 321, 927ADSGoogle Scholar
  25. Stenflo, J.O., Keller, C.U., Gandorfer, A. (1998), Astron. Astrophys., 329, 319ADSGoogle Scholar
  26. Trujillo Bueno, J. and Fabiani Bendicho P. (1995), Astrophysical Journal, 455, 646ADSCrossRefGoogle Scholar
  27. Trujillo Bueno, J. and Landi Degl’Innocenti, E. (1997), Astrophysical Journal Letters, 482, 183CrossRefGoogle Scholar
  28. Trujillo Bueno, J., Manso Sainz, R. (1999), Astrophys. Journal, 516, in pressGoogle Scholar
  29. Vernazza, J., Avrett, E., Loeser, R. (1981), Astrophys. J. Suppl. Series, 45, 635ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Javier Trujillo Bueno
    • 1
  1. 1.Instituto de Astrofísica de CanariasLa Laguna, TenerifeSpain

Personalised recommendations