Skip to main content

Regionalization of Transcriptional Potential in the Myocardium: ‘Cardiosensor’ Transgenic Mice

  • Chapter
  • 69 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 214))

Abstract

The vertebrate heart results from complex morphological interactions between different cardiac sub-compartments, including right and left atrial and ventricular chambers. Cardiac sub-domains originate in early heart development: cardiomyocytes differentiate in an anterior-posterior gradient in the anterior lateral mesoderm prior to the formation of a transiently linear heart tube. Studies in the chick have shown that the cardiac tube contains future sub-regions of the heart arranged in series along the anterior-posterior axis [1]. Subsequently the heart tube undergoes a process of rightward looping, and the caudal inflow region is displaced dorsally and anteriorally, resulting in an embryonic heart composed of a series of sub-compartments or segments: inflow tract (IFT), embryonic atrium, atrioventricular canal (AVC), embryonic left and right ventricles and outflow tract (OFT). Subsequent growth, septation, and remodelling of these distinct cardiac segments result in the development of separate right and left atrial and ventricular chambers with independent inlets and outlets. Morphological remodelling between different cardiac sub-domains is often perturbed in congenital heart defects in man.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De la Cruz MV, Sanchez-Gomez C, Palomino MA. The primitive cardiac regions in the straight tube heart (stage 9) and their anatomical expression in the mature heart: an experimental study in the chick embryo. J Anat 1989; 165: 121–31.

    Google Scholar 

  2. Kelly R, Franco D, Moorman AFM, Buckingham M. Chamber-specific myofilament gene expression: implications for A/P patterning. Chapter in “Heart Development”, Eds. Rosenthal N, Harvey R. Academic Press; 1998:p. 333–55.

    Google Scholar 

  3. Kelly R, Alonso S, Tajbakhsh S, Cossu G, Buckingham M. Myosin light chain 3F regulatory sequences confer regionalized cardiac and skeletal muscle expression in transgenic mice. J Cell Biol 1995; 129: 383–96.

    Article  PubMed  CAS  Google Scholar 

  4. McGrew MJ, Bogdanova N, Hasegawa K, Hughes SH, Kitsis RN, Rosenthal N. Distinct gene expression patterns in skeletal and cardiac muscle are dependent on common regulatory sequences in the MLC1/3 locus. Mol Cell Biol 1996; 16: 4524–34.

    PubMed  CAS  Google Scholar 

  5. Rosenthal N, Kornhauser JM, Donoghue M, Rosen KM, Merlie JP. Myosin light chain enhancer activates muscle-specific, developmentally regulated gene expression in transgenic mice. Proc Natl Acad Sci USA 1989; 86: 7780–84.

    Article  PubMed  CAS  Google Scholar 

  6. Kelly RG, Zammit PS, Schneider A, Alonso S, Biben C, Buckingham ME. Embryonic and fetal myogenic programs act through separate enhancers at the MLC1F/3F locus. Dev Biol 1997; 187, 183–99.

    Article  PubMed  CAS  Google Scholar 

  7. Kelly R, Zammit P, Mouly V, Butler-Browne G, Buckingham M. Dynamic left/right regionalization of endogenous myosin light chain 3F transcripts in the developing mouse heart. J Mol Cell Cardio 1998; 30: 1067–81.

    Article  CAS  Google Scholar 

  8. Franco D, Kelly R, Lamers W, Buckingham M, Moorman AFM. Regionalized transcriptional domains of myosin light chain 3F transgenes in the embryonic mouse heart: morphogenetic implications. Dev Biol 1997; 188: 17–33.

    Article  PubMed  CAS  Google Scholar 

  9. Ross RS, Navankasattusas S, Harvey RP, Chien KR. An HF-la/HF-lb/MEF-2 combinatorial element confers cardiac ventricular specificity and establishes an anterior-posterior gradient of expression. Development 1996; 122: 1799–809.

    PubMed  CAS  Google Scholar 

  10. Kuisk IR, Li H, Tran D, Capetanaki Y. A single MEF2 site governs desmin transcription in both heart and skeletal muscle during mouse embryogenesis. Dev Biol 1996; 174: 1–13.

    Article  PubMed  CAS  Google Scholar 

  11. Zeller R, Bloch KD, Williams BS, Arceci RJ, Seidman CE. Localized expression of the atrial natriuretic factor gene during cardiac embryogenesis. Genes Dev 1987; 1: 693–98.

    Article  PubMed  CAS  Google Scholar 

  12. Lyons GE. In situ analysis of the cardiac muscle gene program during embryogenesis. Trends Cardiovasc Med 1994; 4: 70–77.

    Article  PubMed  CAS  Google Scholar 

  13. Olson EN, Srivastava D. Molecular pathways controlling heart development. Science 1996; 272: 671–76.

    Article  PubMed  CAS  Google Scholar 

  14. Srivastava D, Thomas T, Lin Q, Kirby ML, Brown D, Olson EN. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor dHAND. Nat Genet 1997; 16: 154–60.

    Article  PubMed  CAS  Google Scholar 

  15. Biben C, Harvey RP. Homeodomain factor Nkx2–5 controls left/right asymmetric expression of bHLH gene eHand during murine heart development. Genes Dev 1997; 11: 1357–69.

    Article  PubMed  CAS  Google Scholar 

  16. Lin Q, Schwarz J, Bucana C, Olson EN. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 1997; 276: 1404–07.

    Article  PubMed  CAS  Google Scholar 

  17. Lyons I, Parsons LM, Hartley L, Li R, Andrews JE, Robb L, Harvey RP. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeobox gene Nkx2–5. Genes Dev 1995; 9: 1654–66.

    Article  PubMed  CAS  Google Scholar 

  18. Rossant, J. Mouse mutants and cardiac development: new molecular insights into cardiogenesis. Circ Res 1996; 78: 349–53.

    Article  PubMed  CAS  Google Scholar 

  19. Seo JW, Brown NA, Ho SY, Anderson RH. Abnormal laterality and congenital cardiac anomalies. Relations of visceral and cardiac morphologies in the iv/iv mouse. Circulation 1992; 86: 642–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kelly, R.G., Zammit, P.S., Franco, D., Moorman, A.F.M., Buckingham, M.E. (1999). Regionalization of Transcriptional Potential in the Myocardium: ‘Cardiosensor’ Transgenic Mice. In: Doevendans, P.A., Reneman, R.S., van Bilsen, M. (eds) Cardiovascular Specific Gene Expression. Developments in Cardiovascular Medicine, vol 214. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9321-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9321-2_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5189-9

  • Online ISBN: 978-94-015-9321-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics